The great versatility of semiconductor materials and the possibility of generation of electrons, holes, hydroxyl radicals, and/or superoxide radicals have increased the applicability of photoelectrocatalysis dramatically in the contemporary world. Photoelectrocatalysis takes advantage of the heterogeneous photocatalytic process by applying a biased potential on a photoelectrode in which the catalyst is supported. This configuration allows more effectiveness of the separation of photogenerated charges due to light irradiation with energy being higher compared to that of the band gap energy of the semiconductor, which thereby leads to an increase in the lifetime of the electron-hole pairs. This work presents a compiled and critical review of photoelectrocatalysis, trends and future prospects of the technique applied in environmental protection studies, hydrogen generation, and water disinfection. Special attention will be focused on the applications of TiO 2 and the production of nanometric morphologies with a great improvement in the photocatalyst properties useful for the degradation of organic pollutants, the reduction of inorganic contaminants, the conversion of CO 2 , microorganism inactivation, and water splitting for hydrogen generation.
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.