The present study aimed to analyze age-related changes to motor coordination, balance, spinal cord oxidative biomarkers in 3-, 6-, 18-, 24-, and 30-month-old rats. The effects of low-intensity exercise on these parameters were also analyzed in 6-, 18-, and 24-month-old rats. Body weight, blood glucose, total cholesterol, and high-density lipoprotein (HDL) cholesterol were assessed for all rats. The soleus muscle weight/body weight ratio was used to estimate skeletal muscle mass loss. Body weight increased until 24 months; only 30-month-old rats exhibited decreased blood glucose and increased total cholesterol and HDL cholesterol. The soleus muscle weight/body weight ratio increased until 18 months, followed by a small decrease in old rats. Exercise did not change any of these parameters. Stride length and step length increased from adult to middle age, but decreased at old age. Stride width increased while the sciatic functional index decreased in old rats. Performance in the balance beam test declined with age. While gait did not change, balance improved after exercise. Aging increased superoxide anion generation, hydrogen peroxide levels, total antioxidant capacity, and superoxide dismutase activity while total thiol decreased and lipid hydroperoxides did not change. Exercise did not significantly change this scenario. Thus, aging increased oxidative stress in the spinal cord, which may be associated with age-induced changes in gait and balance. Regular low-intensity exercise is a good alternative for improving age-induced changes in balance, while beneficial effects on gait and spinal cord oxidative biomarkers cannot be ruled out because of the small number of rats investigated (n=5 or 6/group).
Objective
Oxidative stress plays an important role in neuropathic pain. Spinal manipulative therapy (SMT) can exert beneficial effects in pain outcomes in humans and animal models. SMT can also modulate oxidative stress markers in both humans and animals. We aimed to determine the effect of Impulse®-assisted SMT (ISMT) on nociception and oxidative stress biomarkers in the spinal cord and sciatic nerve of rats with neuropathic pain (NP).
Methods
NP was induced by chronic constriction injury (CCI) of the sciatic nerve. Animals were randomly assigned to naive, sham (rats with sciatic nerve exposure but without ligatures) and CCI, with and without ISMT. ISMT was applied onto the skin area corresponding to the spinous process of L4-L5, 3 times/week, for 2 weeks. Mechanical threshold, latency to paw withdrawal to thermal stimulus and oxidative stress biomarkers in spinal cord and sciatic nerve were the main outcomes evaluated.
Results
ISMT significantly increased mechanical threshold and withdrawal latency after CCI. In the spinal cord, ISMT prevented the increase of pro-oxidative superoxide anion generation and hydrogen peroxide levels. Lipid hydroperoxide levels both in the spinal cord and in the sciatic nerve were attenuated by ISMT. Total antioxidant capacity increased in the spinal cord and sciatic nerve of CCI rats with and without ISMT. CCI and ISMT did not significantly change the total thiol content of the spinal cord.
Conclusions
Our findings suggest reduced oxidative stress in the spinal cord and/or nerve may be an important mechanism underlying a therapeutic effect of SMT to manage NP non-pharmacologically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.