ARTICLE INCLUDES: Supplementary material × Data set FUNDING:None South Africa intends to mitigate its carbon emissions by developing renewable energy from solar, wind and hydro, and investigating alternative energy sources such as natural gas and nuclear. Low-enthalpy geothermal energy is becoming increasingly popular around the world, largely as a result of technological advances that have enabled energy to be harnessed from relatively low temperature sources. However, geothermal energy does not form part of South Africa's future renewable energy scenario. This omission may be related to insufficient regional analysis of potentially viable geothermal zones across the country. We considered existing subsurface temperature and heat flow measurements and performed solutebased hydrochemical geothermometry to determine potentially anomalous geothermal gradients that could signify underlying low-enthalpy geothermal energy resources. We correlated these findings against hydro/geological and tectonic controls to find prospective target regions for investigating geothermal energy development. Our results show a significant link between tectonic features, including those oncraton, and the development of geothermal potential regions. In addition, potential regions in South Africa share similarities with other locations that have successfully harnessed low-enthalpy geothermal energy. South Africa may therefore have a realistic chance of developing geothermal energy, but will still need additional research and development, including new temperature measurements, and structural, hydrogeological and economic investigations. Significance:• The regional low-enthalpy geothermal energy potential of South Africa should be further researched for consideration of low-enthalpy geothermal energy as a renewable energy option. IntroductionSouth Africa is the leading carbon emitter in Africa and has one of the highest rates of emissions of nations in the world. 1 This status can be linked to South Africa's vast coal resources, which are an important contributor to the local mining sector and also account for more than 80% of South Africa's energy generation.1 South Africa intends to reduce its carbon emissions by producing about 40% of the country's total energy through renewable sources by 2030.1 This goal will be achieved mostly through solar-, wind-and hydro-generated forms of energy and largely accelerated by a Renewable Energy Independent Power Producer Procurement Programme, which has attracted considerable private-sector investment. 1 Renewable energy alone will not meet South Africa's growing energy demands and therefore the country will also consider additional large-scale coal-fired energy, nuclear energy and energy produced from shale gas. 1 Low-enthalpy geothermal energy is becoming increasingly popular around the world.2 This popularity is largely because it requires geothermal gradients as low as ca 40 °C/km, which may be found in many global settings. South Africa does not have any active or recent volcanism and is situat...
Evaluating anthropogenic changes to natural systems demand greater quantification through innovative transdisciplinary research focused on adaptation and mitigation across a wide range of thematic sciences. Southernmost Africa is a unique field laboratory to conduct such research linked to earth stewardship, with ‘earth’ as in our Commons. One main focus of the AEON’s Earth Stewardship Science Research Institute (ESSRI) is to quantify the region’s natural and cultural heritage at various scales across land and its flanking oceans, as well as its time-scales ranging from the early Phanerozoic (some 540 million years) to the evolution of the Anthropocene (changes) following the emergence of the first human-culture on the planet some 200 thousand years ago. Here we illustrate the value of this linked research through a number of examples, including: (i) geological field mapping with the aid of drone, satellite and geophysical methods, and geochemical fingerprinting; (ii) regional ground and surface water interaction studies; (iii) monitoring soil erosion, mine tailing dam stability and farming practices linked to food security and development; (iv) ecosystem services through specific biodiversity changes based on spatial logging of marine (oysters and whales) and terrestrial (termites, frogs and monkeys) animals. We find that the history of this margin is highly episodic and complex by, for example, the successful application of ambient noise and groundwater monitoring to assess human-impacted ecosystems. This is also being explored with local Khoisan representatives and rural communities through Citizen Science. Our goal is to publicly share and disseminate the scientific and cultural data, through initiatives like the Africa Alive Corridor 10: ‘Homo Sapiens’ that embraces storytelling along the entire southern coast. It is envisioned that this approach will begin to develop the requisite integrated technological and societal practices that can contribute toward the needs of an ever-evolving and changing global ‘village’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.