Neural IR models have often been studied in homogeneous and narrow settings, which has considerably limited insights into their generalization capabilities. To address this, and to allow researchers to more broadly establish the effectiveness of their models, we introduce BEIR (Benchmarking IR), a heterogeneous benchmark for information retrieval. We leverage a careful selection of 17 datasets for evaluation spanning diverse retrieval tasks including open-domain datasets as well as narrow expert domains. We study the effectiveness of nine state-of-the-art retrieval models in a zero-shot evaluation setup on BEIR, finding that performing well consistently across all datasets is challenging.Our results show BM25 is a robust baseline and Reranking-based models overall achieve the best zero-shot performances, however, at high computational costs. In contrast, Denseretrieval models are computationally more efficient but often underperform other approaches, highlighting the considerable room for improvement in their generalization capabilities. In this work, we extensively analyze different retrieval models and provide several suggestions that we believe may be useful for future work. BEIR datasets and code are available at https://github.com/UKPLab/beir.
There are two approaches for pairwise sentence scoring: Cross-encoders, which perform full-attention over the input pair, and Bi-encoders, which map each input independently to a dense vector space. While crossencoders often achieve higher performance, they are too slow for many practical use cases. Bi-encoders, on the other hand, require substantial training data and fine-tuning over the target task to achieve competitive performance. We present a simple yet efficient data augmentation strategy called Augmented SBERT, where we use the cross-encoder to label a larger set of input pairs to augment the training data for the bi-encoder. We show that, in this process, selecting the sentence pairs is non-trivial and crucial for the success of the method. We evaluate our approach on multiple tasks (in-domain) as well as on a domain adaptation task. Augmented SBERT achieves an improvement of up to 6 points for in-domain and of up to 37 points for domain adaptation tasks compared to the original bi-encoder performance. 1
Dense retrieval approaches can overcome the lexical gap and lead to significantly improved search results. However, they require large amounts of training data which is not available for most domains. As shown in previous work (Thakur et al., 2021b), the performance of dense retrievers severely degrades under a domain shift. This limits the usage of dense retrieval approaches to only a few domains with large training datasets.In this paper, we propose the novel unsupervised domain adaptation method Generative Pseudo Labeling (GPL), which combines a query generator with pseudo labeling from a cross-encoder. On six representative domainspecialized datasets, we find the proposed GPL can outperform an out-of-the-box state-of-theart dense retrieval approach by up to 9.3 points
Dense retrieval approaches can overcome the lexical gap and lead to significantly improved search results. However, they require large amounts of training data which is not available for most domains. As shown in previous work (Thakur et al., 2021b), the performance of dense retrievers severely degrades under a domain shift. This limits the usage of dense retrieval approaches to only a few domains with large training datasets.In this paper, we propose the novel unsupervised domain adaptation method Generative Pseudo Labeling (GPL), which combines a query generator with pseudo labeling from a cross-encoder. On six representative domainspecialized datasets, we find the proposed GPL can outperform an out-of-the-box state-of-theart dense retrieval approach by up to 8.9 points
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.