RNA interference (RNAi)-mediated gene silencing was explored for the control of sap-sucking pest Bemisia tabaci, commonly known as whitefly. dsRNAs and siRNAs were synthesized from five different genes - actin ortholog, ADP/ATP translocase, alpha-tubulin, ribosomal protein L9 (RPL9) and V-ATPase A subunit. A simplified insect bioassay method was developed for the delivery of ds/siRNA through the oral route, and efficacy was evaluated. ds/siRNA caused 29-97% mortality after 6 days of feeding. Each insect ingested nearly 150 nl of insect diet per day, which contained a maximum of 6 ng of RNA. Knocking down the expression of RPL9 and V-ATPase A caused higher mortality with LC50 11.21 and 3.08 microg/ml, respectively, as compared to other genes. Semi-quantitative PCR of the treated insects showed significant decrease in the level of RPL9 and V-ATPase A transcripts. siRNAs were found stable in the insect diet for at least 7 days at the room temperature. Phloem-specific expression of dsRNAs of RPL9 and V-ATPase A in transgenic plants for the protection against whiteflies might be an interesting application of this technology.
BackgroundExpression of double strand RNA (dsRNA) designed against important insect genes in transgenic plants have been shown to give protection against pests through RNA interference (RNAi), thus opening the way for a new generation of insect-resistant crops. We have earlier compared the efficacy of dsRNAs/siRNAs, against a number of target genes, for interference in growth of whitefly (Bemisia tabaci) upon oral feeding. The v-ATPase subunit A (v-ATPaseA) coding gene was identified as a crucial target. We now report the effectiveness of transgenic tobacco plants expressing siRNA to silence v-ATPaseA gene expression for the control of whitefly infestation.Methodology/Principal FindingsTransgenic tobacco lines were developed for the expression of long dsRNA precursor to make siRNA and knock down the v-ATPaseA mRNA in whitefly. Molecular analysis and insecticidal properties of the transgenic plants established the formation of siRNA targeting the whitefly v-ATPaseA, in the leaves. The transcript level of v-ATPaseA in whiteflies was reduced up to 62% after feeding on the transgenic plants. Heavy infestation of whiteflies on the control plants caused significant loss of sugar content which led to the drooping of leaves. The transgenic plants did not show drooping effect.Conclusions/SignificanceHost plant derived pest resistance was achieved against whiteflies by genetic transformation of tobacco which generated siRNA against the whitefly v-ATPaseA gene. Transgenic tobacco lines expressing dsRNA of v-ATPaseA, delivered sufficient siRNA to whiteflies feeding on them, mounting a significant silencing response, leading to their mortality. The transcript level of the target gene was reduced in whiteflies feeding on transgenic plants. The strategy can be taken up for genetic engineering of plants to control whiteflies in field crops.
Whitefly (Bemisia tabaci) damages field crops by sucking sap and transmitting viral diseases. None of the insecticidal proteins used in genetically modified (GM) crop plants to date are effective against whitefly. We report the identification of a protein (Tma12) from an edible fern, Tectaria macrodonta (Fee) C. Chr., that is insecticidal to whitefly (median lethal concentration = 1.49 μg/ml in in vitro feeding assays) and interferes with its life cycle at sublethal doses. Transgenic cotton lines that express Tma12 at ∼0.01% of total soluble leaf protein were resistant to whitefly infestation in contained field trials, with no detectable yield penalty. The transgenic cotton lines were also protected from whitefly-borne cotton leaf curl viral disease. Rats fed Tma12 showed no detectable histological or biochemical changes, and this, together with the predicted absence of allergenic domains in Tma12, indicates that Tma12 might be well suited for deployment in GM crops to control whitefly and the viruses it carries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.