This work presents a framework to classify and evaluate distinct research abstract texts which are focused on the description of processes and their applications. In this context, this paper proposes natural language processing algorithms to classify, segment and evaluate the results of scientific work. Initially, the proposed framework categorize the abstract texts into according to the problems intended to be solved by employing a text classification approach. Then, the abstract text is segmented into problem description, methodology and results. Finally, the methodology of the abstract is ranked based on the sentiment analysis of its results. The proposed framework allows us to quickly rank the best methods to solve specific problems. To validate the proposed framework, oil production anomaly abstracts were experimented and achieved promising results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.