In longitudinal studies involving laboratory-based outcomes, repeated measurements can be censored due to assay detection limits. Linear mixed-effects (LMEs) models are a powerful tool to model the relationship between a response variable and covariates in longitudinal studies. However, the linear parametric form of linear mixed-effect models is often too restrictive to characterize the complex relationship between a response variable and covariates. More general and robust modeling tools, such as nonparametric and semiparametric regression models, have become increasingly popular in the last decade. In this article, we use semiparametric mixed models to analyze censored longitudinal data with irregularly observed repeated measures. The proposed model extends the censored linear mixed-effect model and provides more flexible modeling schemes by allowing the time effect to vary nonparametrically over time. We develop an Expectation-Maximization (EM) algorithm for maximum penalized likelihood estimation of model parameters and the nonparametric component. Further, as a byproduct of the EM algorithm, the smoothing parameter is estimated using a modified linear mixed-effects model, which is faster than alternative methods such as the restricted maximum likelihood approach. Finally, the performance of the proposed approaches is evaluated through extensive simulation studies as well as applications to data sets from acquired immune deficiency syndrome studies.
Thismodel allows us to consider a flexible, functional dependence of an outcome variable over the covariates using nonparametric regression. Moreover, the proposed model takes into account the correlation between observations by using random effects. Penalized likelihood equations are applied to derive the maximum likelihood estimates that appear to be robust against outlying observations with respect to the Mahalanobis distance. We estimate nonparametric functions using smoothing splines under an EM-type algorithm framework. Finally, the proposed approach's performance is evaluated through extensive simulation studies and an application to two datasets from acquired immunodeficiency syndrome clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.