This study evaluates the photosensitizing effectiveness of sodium copper chlorophyllin, a natural green colorant commonly used as a food additive (E-141ii), to inactivate methicillin-sensitive and methicillin-resistant Staphylococcus aureus under red-light illumination. Antimicrobial photodynamic inactivation (aPDI) was tested on a methicillin-sensitive reference strain (ATCC 25923) and a methicillin-resistant Staphylococcus aureus strain (GenBank accession number Mh087437) isolated from a clinical sample. The photoinactivation efficacy was investigated by exposing the bacterial strains to different E-141ii concentrations (0.0, 1.0, 2.5, 5.0, 10.0, and 20.0 µM) and to red light (625 nm) at 30 J cm−2. The results showed that E-141ii itself did not prevent bacterial growth for all tested concentrations when cultures were placed in the dark. By contrast, E-141ii photoinactivated both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) under red-light illumination. However, different dose responses were observed for MSSA and MRSA. Whilst the MSSA growth was inhibited to the detection limit of the method with E-141ii at 2.5 µM, >10 µM concentrations were required to inhibit the growth of MRSA. The data also suggest that E-141ii can produce reactive oxygen species (ROS) via Type I reaction by electron transfer from its first excited singlet state to oxygen molecules. Our findings demonstrate that the tested food colorant has great potential to be used in aPDI of MRSA.
Heterogeneous photocatalysis has emerged as a promising alternative for both micropollutant removal and bacterial inactivation under solar irradiation. Among a variety of photocatalysts explored in the literature, graphite carbon nitride (g-C3N4) is a metal-free semiconductor with acceptable chemical stability, low toxicity, and excellent cost-effectiveness. To minimize its high charge recombination rate and increase the photocatalyst adsorption capacity whilst keeping the metal-free photocatalyst system idea, we proposed the heterojunction formation of g-C3N4 with diamond nanocrystals (DNCs), also known as nanodiamonds. Samples containing different amounts of DNCs were assessed as photocatalysts for pollutant removal from water and as light-activated antibacterial agents against Staphylococcus sureus. The sample containing 28.3 wt.% of DNCs presented the best photocatalytic efficiency against methylene blue, removing 71% of the initial dye concentration after 120 min, with a pseudo-first-order kinetic and a constant rate of 0.0104 min−1, which is nearly twice the value of pure g-C3N4 (0.0059 min−1). The best metal-free photocatalyst was able to promote an enhanced reduction in bacterial growth under illumination, demonstrating its capability of photocatalytic inactivation of Staphylococcus aureus. The enhanced photocatalytic activity was discussed and attributed to (i) the increased adsorption capacity promoted by the presence of DNCs; (ii) the reduced charge recombination rate due to a type-II heterojunction formation; (iii) the enhanced light absorption effectiveness; and (iv) the better charge transfer resistance. These results show that g-C3N4/DNC are low-cost and metal-free photoactive catalysts for wastewater treatment and inactivation of bacteria.
Conjugated polymers are versatile materials with promising applications as light-activated antibacterial agents. This work investigated the photoantimicrobial effect of conjugated polymer nanoparticles (CPNs) composed of poly(2.5-di(hexyloxy)cyanoterephthalylidene) (CN-PPV) prepared under different...
Multidrug-resistant bacteria represent a global health and economic burden that urgently calls for new technologies to combat bacterial antimicrobial resistance. Here, we developed novel nanocomposites (NCPs) based on chitosan that display different degrees of acetylation (DAs), and conjugated polymer cyano-substituted poly(p-phenylene vinylene) (CNPPV) as an alternative approach to inactivate Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. Chitosan’s structure was confirmed through FT-Raman spectroscopy. Bactericidal and photobactericidal activities of NCPs were tested under dark and blue-light irradiation conditions, respectively. Hydrodynamic size and aqueous stability were determined by DLS, zeta potential (ZP) and time-domain NMR. TEM micrographs of NCPs were obtained, and their capacity of generating reactive oxygen species (ROS) under blue illumination was also characterized. Meaningful variations on ZP and relaxation time T2 confirmed successful physical attachment of chitosan/CNPPV. All NCPs exhibited a similar and shrunken spherical shape according to TEM. A lower DA is responsible for driving higher bactericidal performance alongside the synergistic effect from CNPPV, lower nanosized distribution profile and higher positive charged surface. ROS production was proportionally found in NCPs with and without CNPPV by decreasing the DA, leading to a remarkable photobactericidal effect under blue-light irradiation. Overall, our findings indicate that chitosan/CNPPV NCPs may constitute a valuable asset for the development of innovative strategies for inactivation and/or photoinactivation of bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.