Macrophages respond to signals in the microenvironment by changing their functional phenotypes, a process known as polarization. Depending on the context, they acquire different patterns of transcriptional activation, cytokine expression and cellular metabolism which collectively constitute a continuous spectrum of phenotypes, of which the two extremes are denoted as classical (M1) and alternative (M2) activation. To quantitatively decode the underlying principles governing macrophage phenotypic polarization and thereby harness its therapeutic potential in human diseases, a systems-level approach is needed given the multitude of signaling pathways and intracellular regulation involved. Here we develop the first mechanism-based, multi-pathway computational model that describes the integrated signal transduction and macrophage programming under M1 (IFN-γ), M2 (IL-4) and cell stress (hypoxia) stimulation. Our model was calibrated extensively against experimental data, and we mechanistically elucidated several signature feedbacks behind the M1-M2 antagonism and investigated the dynamical shaping of macrophage phenotypes within the M1-M2 spectrum. Model sensitivity analysis also revealed key molecular nodes and interactions as targets with potential therapeutic values for the pathophysiology of peripheral arterial disease and cancer. Through simulations that dynamically capture the signal integration and phenotypic marker expression in the differential macrophage polarization responses, our model provides an important computational basis toward a more quantitative and network-centric understanding of the complex physiology and versatile functions of macrophages in human diseases.
Summary
Macrophages are highly plastic immune cells that dynamically integrate microenvironmental signals to shape their own functional phenotypes, a process known as polarization. Here we develop a large-scale mechanistic computational model that for the first time enables a systems-level characterization, from quantitative, temporal, dose-dependent, and single-cell perspectives, of macrophage polarization driven by a complex multi-pathway signaling network. The model was extensively calibrated and validated against literature and focused on in-house experimental data. Using the model, we generated dynamic phenotype maps in response to numerous combinations of polarizing signals; we also probed into an
in silico
population of model-based macrophages to examine the impact of polarization continuum at the single-cell level. Additionally, we analyzed the model under an
in vitro
condition of peripheral arterial disease to evaluate strategies that can potentially induce therapeutic macrophage repolarization. Our model is a key step toward the future development of a network-centric, comprehensive “virtual macrophage” simulation platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.