Background
A global pandemic has been declared for coronavirus disease 2019 (COVID-19), which has serious impacts on human health and healthcare systems in the affected areas, including Vietnam. None of the previous studies have a framework to provide summary statistics of the virus variants and assess the severity associated with virus proteins and host cells in COVID-19 patients in Vietnam.
Method
In this paper, we comprehensively investigated SARS-CoV-2 variants and immune responses in COVID-19 patients. We provided summary statistics of target sequences of SARS-CoV-2 in Vietnam and other countries for data scientists to use in downstream analysis for therapeutic targets. For host cells, we proposed a predictive model of the severity of COVID-19 based on public datasets of hospitalization status in Vietnam, incorporating a polygenic risk score. This score uses immunogenic SNP biomarkers as indicators of COVID-19 severity.
Result
We identified that the Delta variant of SARS-CoV-2 is most prevalent in southern areas of Vietnam and it is different from other areas in the world using various data sources. Our predictive models of COVID-19 severity had high accuracy (Random Forest AUC = 0.81, Elastic Net AUC = 0.7, and SVM AUC = 0.69) and showed that the use of polygenic risk scores increased the models’ predictive capabilities.
Conclusion
We provided a comprehensive analysis for COVID-19 severity in Vietnam. This investigation is not only helpful for COVID-19 treatment in therapeutic target studies, but also could influence further research on the disease progression and personalized clinical outcomes.
Transcriptome data can provide information on signaling pathways active in cancers, but new computational tools are needed to more accurately quantify pathway activity and identify tissue-specific pathway features. We developed a computational method called “BioTarget” that incorporates ChIP-seq data into cellular pathway analysis. This tool relates the expression of transcription factor TF target genes (based on ChIP-seq data) with the status of upstream signaling components for an accurate quantification of pathway activity. This analysis also reveals TF targets expressed in specific contexts/tissues. We applied BioTarget to assess the activity of TBX21 and GATA3 pathways in cancers. TBX21 and GATA3 are TF regulators that control the differentiation of T cells into Th1 and Th2 helper cells that mediate cell-based and humoral immune responses, respectively. Since tumor immune responses can impact cancer progression, the significance of our pathway scores should be revealed by effective patient stratification. We found that low Th1/Th2 activity ratios were associated with a significantly poorer survival of stomach and breast cancer patients, whereas an unbalanced Th1/Th2 response was correlated with poorer survival of colon cancer patients. Lung adenocarcinoma and lung squamous cell carcinoma patients had the lowest survival rates when both Th1 and Th2 responses were high. Our method also identified context-specific target genes for TBX21 and GATA3. Applying the BioTarget tool to BCL6, a TF associated with germinal center lymphocytes, we observed that patients with an active BCL6 pathway had significantly improved survival for breast, colon, and stomach cancer. Our findings support the effectiveness of the BioTarget tool for transcriptome analysis and point to interesting associations between some immune-response pathways and cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.