The present study focuses on the evaluation of the potential of a Tunisian Bacillus thuringiensis (Bt) isolate named Hr1, isolated from dead and diseased pod borer, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) larvae under laboratory and field semi-controlled conditions. The bacterial strain Hr1 showed an insecticidal activity against the pest's neonates in comparison to the spinosad-based insecticide (Tracer 240 SC®) during bioassays under laboratory conditions. A carboxymethyl cellulose-talc (CMC-talc)-based formulation of the Bt isolate was prepared to evaluate the potential of the bacterium on tomato plants infested with H. armigera under semi-controlled field conditions with and without rain simulation. The results showed the efficacy of the formulation than the spinosad-based insecticide and the treatment with unformulated bacterium. The results also showed the persistence of Bt isolate activity even after rain-wash than the treatment with unformulated bacterium.
Background
The baculovirus Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) is an entomopathogenic virus utilized as a biological control agent of the Egyptian cotton leaf worm, Spodoptera littoralis. Several studies have focused on the identification of different SpliNPV isolates from a biological and molecular point of view, but few of them conducted in-depth analyses of the genomic composition of these isolates.
Results
Identification of a novel isolate of SpliNPV, termed Tun2, which was purified from infected S. littoralis larvae from Tunisia was reported. This isolate was propagated in vivo and its median lethal concentration (LC50) was determined to be 1.5 × 104 occlusion bodies (OBs)/ml for third instar S. littoralis larvae at 7 days of post-infection. OB production in late fourth instar larvae was estimated to be at least 2.7 × 109 OBs/g larval weight. The completely sequenced genome of SpliNPV-Tun2 was 137,099 bp in length and contained 132 open reading frames (ORF). It showed a 98.2% nucleotide identity to the Egyptian isolate SpliMNPV-AN1956, with some striking differences; between both genomes, insertion and deletion mutations were noticed in 9 baculovirus core genes, and also in the highly conserved polyhedrin gene. The homologs of ORF 106 and ORF 107 of SpliNPV-AN1956 appeared to be fused to a single ORF 106 in SpliNPV-Tun2, similar to the homologous ORF 110 in SpltNPV-G2.
Conclusion
SpliNPV-Tun2 is proposed as a new variant of SpliNPV and a potential candidate for further evaluation as a biocontrol agent for S. littoralis and probably other Spodoptera species.
The Aphididae family contains many polyphagous species. In the current study, four species were identified in an organic Citrus orchard in Northeastern Tunisia. These species are Aphis gossypii, A. spiraecola, Macrosiphum euphorbiae, and Toxoptera aurantii. The most important and abundant species was A. gossypii followed respectively by A. spiraecola, M. euphorbiae, and T. aurantii. Monitoring species dynamic population showed that aphids began to occur since February and reached then high levels from March to May. Various structure and beta diversity indexes were calculated. The obtained results demonstrated that there was a high dominance of few or one species. The evenness index was high and had a significant positive correlation with the Berger-Parker index. The Equitability index was low. The richness index had a strong positive correlation with Margalef's richness index and the number of species. However, Menhinick's diversity index had a weak positive relationship with the Specific richness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.