The effects of anode orientation (whether an anode is located above or under a cathode) and flow channel design (parallel or serpentine flow channel) on the performance of refuelable zinc-air fuel cells (RZAFC) continuously fed with KOH electrolyte were investigated. The performance test was conducted at different electrolyte flow rates of 2, 4, and 6 ml h -1 . A polarization test of the cell was conducted at the initial stage of operation, followed by a long-term current discharge test in potentiostatic mode. The spent zinc powders were characterized by a scanning electron microscope and X-ray diffraction. The experimental results revealed that the anode-bottom orientation in the cell performed much better than the anodetop orientation with 11.4 times higher zinc utilization. The performance reduction of the anode-top orientation cell was caused by the cathode overpotential, due to the flooding of the cathode by water crossover from the anode, which was induced by the gravity force. For the flow channel design effects, there was an optimum electrolyte flow rate, to yield a maximum current discharge capacity, of 4 ml h -1 in this study. At this optimum flow rate, the total charge per gram of zinc delivered from the anode serpentine cell was 1.75 times higher than that from the anode-parallel one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.