Let S be a semigroup. An element a of S is called a right [left] magnifying element if there exists a proper subset M of S satisfying S = M a [ S = a M ] . Let E be an equivalence relation on a nonempty set X. In this paper, we consider the semigroup P ( X , E ) consisting of all E-preserving partial transformations, which is a subsemigroup of the partial transformation semigroup P ( X ) . The main propose of this paper is to show the necessary and sufficient conditions for elements in P ( X , E ) to be right or left magnifying.
A ternary semigroup is a nonempty set with a ternary operation satisfy the associative law. In this paper, we define straddles on ternary semigroups and investigate some properties of straddles of ternary semigroups.
An element a of a semigroup S is called a left [right] magnifier if there exists a proper subset M of S such that a M = S ( M a = S ) . Let T ( X ) denote the semigroup of all transformations on a nonempty set X under the composition of functions, P = { X i ∣ i ∈ Λ } be a partition, and ρ be an equivalence relation on the set X. In this paper, we focus on the properties of magnifiers of the set T ρ ( X , P ) = { f ∈ T ( X ) ∣ ∀ ( x , y ) ∈ ρ , ( x f , y f ) ∈ ρ and X i f ⊆ X i for all i ∈ Λ } , which is a subsemigroup of T ( X ) , and provide the necessary and sufficient conditions for elements in T ρ ( X , P ) to be left or right magnifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.