The Mekong River supports unique biodiversity and provides food security for over sixty million people in the Indo-Burma region, but potential changes to natural flow patterns from hydropower development are a major risk to the wellbeing of this system. Of particular concern is the ongoing and future development of 42 dams in the transboundary Srepok, Sesan and Sekong (3S) Basin which contributes up to 20% of the Mekong's annual flows and provides critical ecosystem services to the downstream Tonle Sap Lake and the Mekong Delta. To assess the magnitude of potential changes, daily flows were simulated over 20 years using the HEC ResSim and SWAT models for a range of dam operations and development scenarios. A 63% increase in dry season flows and a 22% decrease in wet season flows at the outlet of the 3S Basin can result from the potential development of new dams in the main 3S Rivers under an operation scheme to maximize electricity production. have small reservoir storages. Impacts on hourly flow changes due to intra daily reservoir operations, sediment movement, water quality and ecology need further study. Strategic site selection and coordinated reservoir operations between countries are necessary to achieve an acceptable level of development in the basin and mitigate negative impacts to seasonal flow patterns which sustain downstream ecosystem productivity and livelihoods.
The Mekong is one of the world's great rivers. It has the greatest mean annual flow in the world for a river basin of comparable size. The flow regime, with very distinct wet and dry seasons, supports a rich biodiversity and the world's largest freshwater fishery. Given that at the present time the hydrological regime of the Mekong remains in its natural state, the accelerating pace of water resources development will induce hydrological change. The natural productivity of the system is therefore potentially jeopardized. This paper reports the findings of simulation studies of the potential hydrological impacts of water resource development scenarios over future planning horizons. In the Definite Future scenario (next 5 years), the seasonal redistribution of water by on-going hydropower development will increase the dry season flow by 40-60% in the upper portion of the basin and by 20-30% in the Mekong Delta. The Foreseeable Future scenario (next 20 years) and Long-Term Future scenario (next 50 years) will result in relatively small changes to the flow regime as further increases in dry season reservoir releases will be offset by planned increases in irrigation and other consumptive water demands. All scenarios were predicted to reduce the average wet season flows by 4-14%, flow reversal to the Tonle Sap Lake by 7-16%, flooded areas by 5-8% and salinity intrusion areas in the Viet Nam Delta by 15-17%. Predicted changes in Definite Future scenario will be irreversible, necessitating improved coordination between the LMB countries and cooperation with China in order to manage the risks and maximize the regional benefits. The scenario assessments highlighted the areas where research is necessary to mitigate and manage impacts in order to ensure the reasonable and equitable use of the Mekong basin's water resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.