We introduce a new technique, a three-level average linear-implicit finite difference method, for solving the Rosenau-Burgers equation. A second-order accuracy on both space and time numerical solution of the Rosenau-Burgers equation is obtained using a five-point stencil. We prove the existence and uniqueness of the numerical solution. Moreover, the convergence and stability of the numerical solution are also shown. The numerical results show that our method improves the accuracy of the solution significantly.
This paper presents a mathematical model to solve the vehicle routing problem with soft time windows (VRPSTW) and distribution of products with multiple categories. In addition, we include multiple compartments and trips. Each compartment is dedicated to a single type of product. Each vehicle is allowed to have more than one trip, as long as it corresponds to the maximum distance allowed in a workday. Numerical results show the effectiveness of our model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.