SummaryBackgroundPrimaquine is the only widely used drug that prevents Plasmodium vivax malaria relapses, but adherence to the standard 14-day regimen is poor. We aimed to assess the efficacy of a shorter course (7 days) of primaquine for radical cure of vivax malaria.MethodsWe did a randomised, double-blind, placebo-controlled, non-inferiority trial in eight health-care clinics (two each in Afghanistan, Ethiopia, Indonesia, and Vietnam). Patients (aged ≥6 months) with normal glucose-6-phosphate dehydrogenase (G6PD) and presenting with uncomplicated vivax malaria were enrolled. Patients were given standard blood schizontocidal treatment and randomly assigned (2:2:1) to receive 7 days of supervised primaquine (1·0 mg/kg per day), 14 days of supervised primaquine (0·5 mg/kg per day), or placebo. The primary endpoint was the incidence rate of symptomatic P vivax parasitaemia during the 12-month follow-up period, assessed in the intention-to-treat population. A margin of 0·07 recurrences per person-year was used to establish non-inferiority of the 7-day regimen compared with the 14-day regimen. This trial is registered at ClinicalTrials.gov (NCT01814683).FindingsBetween July 20, 2014, and Nov 25, 2017, 2336 patients were enrolled. The incidence rate of symptomatic recurrent P vivax malaria was 0·18 (95% CI 0·15 to 0·21) recurrences per person-year for 935 patients in the 7-day primaquine group and 0·16 (0·13 to 0·18) for 937 patients in the 14-day primaquine group, a difference of 0·02 (−0·02 to 0·05, p=0·3405). The incidence rate for 464 patients in the placebo group was 0·96 (95% CI 0·83 to 1·08) recurrences per person-year. Potentially drug-related serious adverse events within 42 days of starting treatment were reported in nine (1·0%) of 935 patients in the 7-day group, one (0·1%) of 937 in the 14-day group and none of 464 in the control arm. Four of the serious adverse events were significant haemolysis (three in the 7-day group and one in the 14-day group).InterpretationIn patients with normal G6PD, 7-day primaquine was well tolerated and non-inferior to 14-day primaquine. The short-course regimen might improve adherence and therefore the effectiveness of primaquine for radical cure of P vivax malaria.FundingUK Department for International Development, UK Medical Research Council, UK National Institute for Health Research, and the Wellcome Trust through the Joint Global Health Trials Scheme (MR/K007424/1) and the Bill & Melinda Gates Foundation (OPP1054404).
Background Microscopic examination of Giemsa-stained blood films remains the reference standard for malaria parasite detection and quantification, but is undermined by difficulties in ensuring high-quality manual reading and inter-reader reliability. Automated parasite detection and quantification may address this issue. Methods A multi-centre, observational study was conducted during 2018 and 2019 at 11 sites to assess the performance of the EasyScan Go, a microscopy device employing machine-learning-based image analysis. Sensitivity, specificity, accuracy of species detection and parasite density estimation were assessed with expert microscopy as the reference. Intra- and inter-device reliability of the device was also evaluated by comparing results from repeat reads on the same and two different devices. This study has been reported in accordance with the Standards for Reporting Diagnostic accuracy studies (STARD) checklist. Results In total, 2250 Giemsa-stained blood films were prepared and read independently by expert microscopists and the EasyScan Go device. The diagnostic sensitivity of EasyScan Go was 91.1% (95% CI 88.9–92.7), and specificity 75.6% (95% CI 73.1–78.0). With good quality slides sensitivity was similar (89.1%, 95%CI 86.2–91.5), but specificity increased to 85.1% (95%CI 82.6–87.4). Sensitivity increased with parasitaemia rising from 57% at < 200 parasite/µL, to ≥ 90% at > 200–200,000 parasite/µL. Species were identified accurately in 93% of Plasmodium falciparum samples (kappa = 0.76, 95% CI 0.69–0.83), and in 92% of Plasmodium vivax samples (kappa = 0.73, 95% CI 0.66–0.80). Parasite density estimates by the EasyScan Go were within ± 25% of the microscopic reference counts in 23% of slides. Conclusions The performance of the EasyScan Go in parasite detection and species identification accuracy fulfil WHO-TDR Research Malaria Microscopy competence level 2 criteria. In terms of parasite quantification and false positive rate, it meets the level 4 WHO-TDR Research Malaria Microscopy criteria. All performance parameters were significantly affected by slide quality. Further software improvement is required to improve sensitivity at low parasitaemia and parasite density estimations. Trial registration ClinicalTrials.gov number NCT03512678.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.