Biosurfactants are unique secondary metabolites, synthesised non-ribosomally by certain bacteria, fungi and yeast, with their most promising applications as antimicrobial agents and surfactants in the medical and food industries. Naturally produced glycolipids and lipopeptides are found as a mixture of congeners, which increases their antimicrobial potency. Sensitive analysis techniques, such as liquid chromatography coupled to mass spectrometry, enable the fingerprinting of different biosurfactant congeners within a naturally produced crude extract. Bacillus amyloliquefaciens ST34 and Pseudomonas aeruginosa ST5, isolated from wastewater, were screened for biosurfactant production. Biosurfactant compounds were solvent extracted and characterised using ultra-performance liquid chromatography (UPLC) coupled to electrospray ionisation mass spectrometry (ESI–MS). Results indicated that B. amyloliquefaciens ST34 produced C13–16 surfactin analogues and their identity were confirmed by high resolution ESI–MS and UPLC–MS. In the crude extract obtained from P. aeruginosa ST5, high resolution ESI–MS linked to UPLC–MS confirmed the presence of di- and monorhamnolipid congeners, specifically Rha–Rha–C10–C10 and Rha–C10–C10, Rha–Rha–C8–C10/Rha–Rha–C10–C8 and Rha–C8–C10/Rha–C10–C8, as well as Rha–Rha–C12–C10/Rha–Rha–C10–C12 and Rha–C12–C10/Rha–C10–C12. The crude surfactin and rhamnolipid extracts also retained pronounced antimicrobial activity against a broad spectrum of opportunistic and pathogenic microorganisms, including antibiotic resistant Staphylococcus aureus and Escherichia coli strains and the pathogenic yeast Candida albicans. In addition, the rapid solvent extraction combined with UPLC–MS of the crude samples is a simple and powerful technique to provide fast, sensitive and highly specific data on the characterisation of biosurfactant compounds.Electronic supplementary materialThe online version of this article (doi:10.1186/s13568-017-0363-8) contains supplementary material, which is available to authorized users.
A broad body of literature has been published regarding roof-harvested rainwater quality around the world. In particular, the presence of fecal indicator bacteria and pathogenic microorganisms has raised concerns regarding the acceptability of rainwater for potable and non-potable uses. As the use of molecular assays has improved understanding of the diverse microbial communities present in rainwater tanks and their role in providing benefits or harm to human health, a comprehensive review is needed to summarize the state of the science in this area. To provide a summary of microbial contaminants in rainwater tanks and contextual factors, a comprehensive review was conducted here to elucidate the uses of rainwater, factors affecting water quality, concentrations of fecal indicators and pathogens, the attribution of pathogens to host sources using microbial source tracking, microbial ecology, human health risks determined using epidemiological approaches and quantitative microbial risk assessment, and treatment approaches for mitigating risks. Research gaps were identified for pathogen concentration data, microbial source tracking approaches for identifying the sources of microbial contamination, limitations to current approaches for assessing viability, treatment, and maintenance practices. Frameworks should be developed to assess and prioritize these factors in order to optimize public health promotion for roof-harvested rainwater.
Ethidium monoazide (EMA) quantitative polymerase chain reaction (qPCR), propidium monoazide (PMA)-qPCR and DNase treatment in combination with qPCR were compared for the determination of microbial cell viability. Additionally, varying EMA and PMA concentrations were analysed to determine which dye and concentration allowed for the optimal identification of viable cells. Viable, heat treated (70 °C for 15 min) and autoclaved cultures of Legionella pneumophila, Pseudomonas aeruginosa, Salmonella typhimurium, Staphylococcus aureus and Enterococcus faecalis were utilised in the respective viability assays. Analysis of the viable and heat-treated samples indicated that variable log reductions were recorded for both EMA [log reductions ranging from 0.01 to 2.71 (viable) and 0.27 to 2.85 (heat treated)], PMA [log reductions ranging from 0.06 to 1.02 (viable) and 0.62 to 2.46 (heat treated)] and DNase treatment [log reductions ranging from 0.06 to 0.82 (viable) and 0.70 to 2.91 (heat treated)], in comparison to the no viability treatment controls. Based on the results obtained, 6 μM EMA and 50 μM PMA were identified as the optimal dye concentrations as low log reductions were recorded (viable and heat-treated samples) in comparison to the no viability treatment control. In addition, the results recorded for the 6 μM EMA concentration were comparable to the results obtained for both the 50 μM PMA and the DNase treatment. The use of EMA-qPCR (6 μM) may therefore allow for the rapid identification and quantification of multiple intact opportunistic pathogens in water sources, which would benefit routine water quality monitoring following disinfection treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.