The presence of geosynthetic reinforcement in soil mass has been shown to reduce the tendency of dilation of the soil when subject to shear stress, especially when the reinforcement is closely spaced. As tensile loads are induced in geosynthetic reinforcement, adjacent reinforcement layers tend to act as tensioned membranes that inhibit dilation of the soil enclosed between the reinforcement layers. The suppression of soil dilation leads to stronger soil and is regarded as a reinforcing mechanism. This paper presents for the first time measured volume change behavior of field-scale experiments on reinforced and unreinforced soils. The volume change behavior, as characterized quantitatively by the angle of dilation, is presented and discussed. This paper also describes finite element analysis for the stress-strain and volume change behavior of field-scale soil-geosynthetic composites. Using the calibrated finite element model, a parametric study was conducted to examine the effects of reinforcement spacing, reinforcement stiffness, and soil stiffness on volume change behavior of soil-geosynthetic composites. The measured data and finite element analysis results
Fill compaction in the construction of Geosynthetic Reinforced Soil (GRS) mass is typically performed by operating a vibratory or roller compactor, which in turns imposed a compaction load in direction perpendicular to the wall face. The compaction process resulted in the development of the so-called compaction-induced stress (CIS), which may subsequently increase the stiffness and strength of the fill material. Compaction process is normally simulated using one of the following compaction procedures—(i) a uniformly distributed load acting on the top surface of each soil lift, (ii) a uniformly distributed load acting on the top and bottom surface of each soil lift, and (iii) a moving strip load with different width. Uncertainties such as compaction procedures, compaction and surcharge loads led to the disparity in studying the mechanism of GRS mass. This paper aimed to study the impact of compaction load, compaction procedure, surcharge load and CIS on the stress-deformation behavior of GRS mass via the simulation of a 2 m high Soil Geosynthetic Composite (SGC) mass and a 6 m high GRS mass. The results were examined in terms of reinforcement strains, wall lateral displacements, and net CIS. Results from the analysis show the important impacts of compaction conditions on the stress-deformation behavior of SGC mass and the CIS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.