Attribute reduction from decision tables is one of the crucial topics in data mining. This problem belongs to NP-hard and many approximation algorithms based on the filter or the filter-wrapper approaches have been designed to find the reducts. Intuitionistic fuzzy set (IFS) has been regarded as the effective tool to deal with such the problem by adding two degrees, namely the membership and non-membership for each data element. The separation of attributes in the view of two counterparts as in the IFS set would increase the quality of classification and reduce the reducts. From this motivation, this paper proposes a new filter-wrapper algorithm based on the IFS for attribute reduction from decision tables. The contributions include a new instituitionistics fuzzy distance between partitions accompanied with theoretical analysis. The filter-wrapper algorithm is designed based on that distance with the new stopping condition based on the concept of delta-equality. Experiments are conducted on the benchmark UCI machine learning repository datasets.
Abstract. Frequent sequential pattern mining in item interval extended sequence database (iSDB) has been one of interesting task in recent years. Unlike classic frequent sequential pattern mining, the pattern mining in iSDB also consider the item interval between successive items; thus, it may extract more meaningful sequential patterns in real life. Most previous frequent sequential pattern mining in iSDB algorithms needs a minimum support threshold (minsup) to perform the mining. However, it’s not easy for users to provide an appropriate threshold in practice. The too high minsup value will lead to missing valuable patterns, while the too low minsup value may generate too many useless patterns. To address this problem, we propose an algorithm: TopKWFP – Top-k weighted frequent sequential pattern mining in item interval extended sequence database. Our algorithm doesn’t need to provide a fixed minsup value, this minsup value will dynamically raise during the mining process
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.