SummaryWe describe a novel strategy to produce vaccine antigens using a plant cell-suspension culture system in lieu of the conventional bacterial or animal cell-culture systems. We generated transgenic cell-suspension cultures from Nicotiana benthamiana leaves carrying wild-type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot-and-mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co-expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large-scale production of immunopeptide vaccines in a cost-effective manner using a plant cell-suspension culture system.
Plants show great potential for producing recombinant proteins in a cost-effective manner. Many strategies have therefore been employed to express high levels of recombinant proteins in plants. Although foreign domains are fused to target proteins for high expression or as an affinity tag for purification, the retention of foreign domains on a target protein may be undesirable, especially for biomedical purposes. Thus, their removal is often crucial at a certain time point after translation. Here, we developed a new strategy to produce target proteins without foreign domains. This involved in vivo removal of foreign domains fused to the N-terminus by the small ubiquitin-related modifier (SUMO) domain/SUMO-specific protease system. This strategy was tested successfully by generating a recombinant gene, BiP:p38:bdSUMO : His:hLIF, that produced human leukemia inhibitory factor (hLIF) fused to p38, a coat protein of the Turnip crinkle virus; the inclusion of p38 increased levels of protein expression. The recombinant protein was expressed at high levels in the leaf tissue of Nicotiana benthamiana. Coexpression of bdSENP1, a SUMO-specific protease, proteolytically released His:hLIF from the full-length recombinant protein in the endoplasmic reticulum of N. benthamiana leaf cells. His:hLIF was purified from leaf extracts via Ni 2+-NTA affinity purification resulting in a yield of 32.49 mg/kg, and the Nterminal 5-residues were verified by amino acid sequencing. Plant-produced His:hLIF was able to maintain the pluripotency of mouse embryonic stem cells. This technique thus provides a novel method of removing foreign domains from a target protein in planta.
Recently, plants have emerged as a lucrative alternative system for the production of recombinant proteins, as recombinant proteins produced in plants are safer and cheaper than those produced in bacteria and animal cell-based production systems. To obtain high yields in plants, recombinant proteins are produced in chloroplasts using different strategies. The first strategy is based on chloroplast transformation, followed by gene expression and translation in chloroplasts. This has proven to be a powerful approach for the production of proteins at high levels. The second approach is based on nuclear transformation, followed by post-translational import of proteins from the cytosol into chloroplasts. In the nuclear transformation approach, foreign genes are stably integrated into the nuclear genome or transiently expressed in the nucleus by non-integrating T-DNA. Although this approach also has great potential for protein production at high levels, it has not been thoroughly investigated. In this review, we focus on nuclear transformation-based protein expression and its subsequent sequestration in chloroplasts, and summarize the different strategies used for high-level production of recombinant proteins. We also discuss future directions for further improvements in protein production in chloroplasts through nuclear transformation-based gene expression.
Lipopolysaccharides (LPS) are highly toxic compounds, even at a trace amount. When recombinant proteins are produced in E. coli, it is inevitable that LPS contaminates. However, LPS removal is still technically challenging and costly due to the high degree of solubility in a wide range of solvents. In this study, we explored the possibility of using the N-terminal region containing cysteine-rich, EGF-like, and sushi1–3 domains (CES3) of Factor C from the horseshoe crab Carcinoscorpius rotundicauda to develop a platform to remove LPS from recombinant proteins. We expressed CES3 as part of a recombinant protein, BiP:NT:CBM3:SUMO:CES3:His:HDEL, in Nicotiana benthamiana and found that purified or microcrystalline cellulose (MCC) bead-immobilised CES3 showed strong binding to LPS-containing E. coli. To produce CES3:CBM3 in an LPS-free environment, we generated Arabidopsis transgenic plants harbouring a recombinant gene, BiP:NT:SUMO:CES3:CBM3:HDEL, and found that transgenic plants mainly produce CES3:CBM3:His:HDEL, a truncated version of BiP:NT:SUMO:CES3:CBM3:HDEL via endogenous protease-mediated proteolytic processing in vivo. CES3:CBM3:HDEL purified from Arabidopsis plant extracts and immobilised onto MCC beads removed LPS contamination from protein samples. We propose that the CES3:CBM3 fusion protein produced in plants and immobilised on MCC beads can be a robust and easy platform for LPS removal from recombinant proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.