Optoelectronic devices based on layered materials such as graphene have resulted in significant interest due to their unique properties and potential technological applications. The electric and optoelectronic properties of nano GaTe flakes as layered materials are described in this article. The transistor fabricated from multilayer GaTe shows a p-type action with a hole mobility of about 0.2 cm(2) V(-1) s(-1). The gate transistor exhibits a high photoresponsivity of 10(4) A/W, which is greatly better than that of graphene, MoS2, and other layered compounds. Meanwhile, the response speed of 6 ms is also very fast. Both the high photoresponsivity and the fast response time described in the present study strongly suggest that multilayer GaTe is a promising candidate for future optoelectronic and photosensitive device applications.
We report the synthesis and characterization of two new furan-based biphenyl end-capped oligomers, 2-([1,1 0 -biphenyl]-4-yl)-5-(5-([1,1 0 -biphenyl]-4-yl)thiophen-2-yl)furan (BPFT) and 5,5 0 -di([1,1 0 -biphenyl]-4-yl)-2,2 0 -bifuran (BP2F) as candidate semiconductors for organic light-emitting field effect transistors (OLETs).Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) showed the high thermostability of these furan-based semiconductors. X-Ray crystallography of single crystals grown by physical vapor transfer (PVT) method revealed a complicated herringbone packing of BPFT stacking with unusual flat and bent structures, which is different from that of BP2F and the bithiophene-based analogue 5,5 0 -di([1,1 0 -biphenyl]-4-yl)-2,2 0 -bithiophene (BP2T). BPFT single crystal showed a higher absolute quantum yield (51%) compared to that of BP2F and BP2T. Density Functional Theory (DFT) calculations showed that the different excitation energies between flat and bent structures led to the asymmetric transition dipoles in dark state of BPFT H-aggregates, which explains the highest PLQY of BPFT single crystal. Single crystal FET based on BPFT showed an ambipolar characteristic with high hole and electron mobilities, while single crystal FET based on BP2F exhibited p-type characteristic with a high hole mobility. Light emission was observed from the single-crystal FET based on BPFT.
Organic semiconductors have attracted much attention for low-cost, flexible and human-friendly optoelectronics. However, achieving high electron-injection efficiency is difficult from air-stable electrodes and cannot be equivalent to that of holes. Here, we present a novel concept of electrode composed of a bilayer of tetratetracontane (TTC) and polycrystalline organic semiconductors (pc-OSC) covered by a metal layer. Field-effect transistors of single-crystal organic semiconductors with the new electrodes of M/pc-OSC/TTC (M: Ca or Au) show both highly efficient electron and hole injection. Contact resistance for electron injection from Au/pc-OSC/TTC and hole injection from Ca/pc-OSC/TTC are comparable to those for electron injection from Ca and hole injection from Au, respectively. Furthermore, the highest field-effect mobilities of holes (22 cm2 V–1 s–1) and electrons (5.0 cm2 V–1 s–1) are observed in rubrene among field-effect transistors with electrodes so far proposed by employing Ca/pc-OSC/TTC and Au/pc-OSC/TTC electrodes for electron and hole injection, respectively.
We theoretically analyze the optoelectronic properties of single crystals of 2,5-bis(4-biphenylyl) bithiophene (BP2T) and 2-(4-biphenyl)-5-[5-(4-biphenyl)-2-thienyl] furan (BPFT) molecules, aiming to provide a guiding principle for the material design of organic light-emitting transistors. The X-ray structure analysis and the density functional theory (DFT) calculations indicate that half of the BPFT molecules bend the π-conjugation plane in the crystal. The Marcus theory parametrized by the DFT calculations indicates anisotropic charge mobilities. The emission spectra of the BP2T and BPFT crystals are analyzed by the time-dependent DFT calculations in conjunction with the Frenkel exciton model and the vibronic coupling analysis. We revealed that the high photoluminescence efficiency of the BPFT crystal originates from the symmetry breaking of the H-aggregate, where the transition dipole of the dark state does not cancel out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.