Adaptive Neuro-Inference system (Anfis) has been widely used in recent studies aiming at generating probabilities of unseen data in binary classification application. It is normally used in combination with optimization algorithms for tuning its parameters to generate optimal objective values. This study proposed a novel method using Simulated Annealing to improve Anfis performance. Malaria occurrences and spatial variation of environmental, socio-economic factors in Daknong province, Vietnam were selected for case study. For accuracy assessment, Receiver Operating Characteristic curve, Cost curve were used and the predicted map was compared to several benchmark classifiers. The results showed that the S-Anfis (AUC = 0.912, RMSE =0.335) outperformed Support Vector Machine (AUC = 0.902, RMSE =0.364), Multiple LayerPerceptron (AUC = 0.868, RMSE =0.430). Although, the performance of S-Anfis depended on proper selection of input factors and geographic variations of those, we concluded that this method could be an alternative in mapping susceptibility of malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.