This study presents a laser ultrasonic imaging and damage detection technique that creates images of ultrasonic waves propagating on a rotating structure and identifies damage. Laser ultrasonics is attractive for nondestructive testing mainly because of two reasons: (1) ultrasonic waves can be generated and/or measured in a noncontact manner and (2) even a small defect can be detected when laser ultrasonic scanning produces ultrasonic images with high spatial resolution. However, when it comes to a moving target, it becomes challenging to create reliable ultrasonic images. In this study, ultrasonic wave propagation images are obtained from a rotating blade using a pulse laser beam for ultrasonic generation, a galvanometer for laser scanning, and an embedded piezoelectric sensor for ultrasonic measurement. To properly estimate the laser excitation points during the scanning process rather than to precisely control the excitation points, a simple but rather effective localization technique is developed so that ultrasonic images can be constructed even from a moving target. Once the ultrasonic wave propagation images are created, damage on the target structure is visualized using a specially designed standing wave filter.
The pipeline is an essential part of nuclear and other power plants. Designed to operate for decades, the pipeline is susceptible to multiple types of damage due to working in a high pressure, high temperature, and highly corrosive environment. Therefore, it requires regular inspection. The issue of many current nondestructive testing systems for pipelines is the use of a one-dimensional scan mechanism along the longitudinal direction of the pipe, which is incompatible with the two-dimensional curvature of elbow pipes, yet it is at these places in which the flow changes directions inside the elbow pipes that a common type of damage occurs: flow-accelerated corrosion damage. In this article, flow-accelerated corrosion damage is visualized using the Ultrasonic Wavenumber Imaging algorithm, which maps the dominant local spectroscopic wavenumber of the wavefield at a particular mode and a particular frequency. In previous studies, the mode and frequency were chosen empirically. In this article, a novel theoretical study is presented to optimize the two input parameters of Ultrasonic Wavenumber Imaging based on a sensitivity analysis of the spectroscopic wavenumber with respect to the change in thickness of the structural base. Additionally, an inverse method is proposed to estimate the thickness of the structure based on the Ultrasonic Wavenumber Imaging map.
One of the main challenges of using laser ultrasonic techniques for non-destructive testing applications is the typically low signal-to-noise ratio of the laser ultrasonic signals. In the case of thick composite structures, this is even more problematic since composite materials have very strong sound attenuation. This article investigates the effects of laser beam size and profile to the amplitude of pulse-echo laser ultrasonic signals with the constraint that the peak energy density (fluence) must be kept constant under the thermal damage threshold of material like polymer matrix composites. Such constraint is very important for the non-destructive feature of non-destructive testing, yet in a number of the existing parameter studies of laser ultrasonics, it was not fully investigated. In this article, a series of A-scan and C-scan experiments on thick composite specimens shows that the amplitude of the direct waves and the reflected waves increases with the increase in laser beam size with constant peak energy density. This amplitude enhancement significantly improves the propagation depth, thereby optimizing the system for inspection of thick composite structures. The validity of experimental results is verified theoretically by solving the thermoelastic model of epicenter displacement using Laplace–Hankel transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.