Background African swine fever (ASF), caused by the ASF virus (ASFV), was first reported in Vietnam in 2019 and spread rapidly thereafter. Better insights into ASFV characteristics and early detection by surveillance could help control its spread. However, the pathogenicity and methods for early detection of ASFV isolates from Vietnam have not been established. Therefore, we investigated the pathogenicity of ASFV and explored alternative sampling methods for early detection. Results Ten pigs were intramuscularly inoculated with an ASFV strain from Vietnam (titer, 103.5 HAD50/mL), and their temperature, clinical signs, and virus excretion patterns were recorded. In addition, herd and environmental samples were collected daily. The pigs died 5–8 days-post-inoculation (dpi), and the incubation period was 3.7 ± 0.5 dpi. ASFV genome was first detected in the blood (2.2 ± 0.8) and then in rectal (3.1 ± 0.7), nasal (3.2 ± 0.4), and oral (3.6 ± 0.7 dpi) swab samples. ASFV was detected in oral fluid samples collected using a chewed rope from 3 dpi. The liver showed the highest viral loads, and ear tissue also exhibited high viral loads among 11 tissues obtained from dead pigs. Overall, ASFV from Vietnam was classified as peracute to acute form. The rope-based oral fluid collection method could be useful for early ASFV detection and allows successful ASF surveillance in large pig farms. Furthermore, ear tissue samples might be a simple alternative specimen for diagnosing ASF infection in dead pigs. Conclusions Our data provide valuable insights into the characteristics of a typical ASFV strain isolated in Vietnam and suggest an alternative, non-invasive specimen collection strategy for early detection.
In Vietnam, highly pathogenic avian influenza (HPAI) H5N1 infections in poultry often occur without concomitant clinical signs and outbreaks are not consistently reported. Live bird markets represent a convenient site for surveillance that does not rely on farmers' notifications. Two H5N1 surveys were conducted at live bird markets/slaughter points in 39 districts (five provinces) in the Red River, Mekong delta, and central Vietnam during January and May 2011. Oropharyngeal and rectal swab samples from 12 480 ducks were tested for H5N1 by reverse transcription-polymerase chain reaction in pools of five. Traders and stallholders were interviewed using standardized questionnaires; 3·3% of pools tested positive. The highest prevalence (6·6%) corresponded to the Mekong delta, and no H5N1 was detected in the two Red River provinces. The surveys identified key risk behaviours of traders and stallholders. It is recommended that market surveys are implemented over time as a tool to evaluate progress in HPAI control in Vietnam.
Background Hepatitis E virus (HEV) is a zoonotic disease and has been reported around the world. The main objective of this study was to evaluate the sero-prevalence and phylogenetic analysis of HEV in Vietnam. Pig blood and fecal pooled samples were collected to assess the prevalence of HEV. We assessed the true prevalence (TP) of HEV from apparent prevalence (AP) by taking into account the sensitivity and specificity of diagnostic tests using a Bayesian approach. For phylogenetic analysis, the data compared with worldwide HEV reference strains including all eight genotypes (G1-G8) which were identified in previous study. Results A total of 475 sera and 250 fecal pooled samples were collected at slaughterhouses and pig farms from five provinces, in Viet Nam. Overall, the sero-AP of HEV was 58.53% (95% confidence interval: 53.95–62.70) while the sero-TP was slightly higher (65.43, 95% credible interval: 47.19–84.70). In terms of pooled samples, overall, the RNA-AP was 6.80% (95% confidence interval: 4.01–10.66). One strain in Hanoi, two strains in Dak Lak, seven strains in An Giang, four strains in Son La and two strains in Nghe An were isolated. The phylogenetic tree demonstrated that 19 Vietnamese strains were clustered into HEV 3 and 4. Conclusions This study provided evidence that HEV is circulating in domestic pigs in Vietnam. From a public health perspective, it is very important to raise public awareness for high-risk groups (e.g. slaughterhouse workers, pig traders, farmers and market sellers) who have more opportunities to come in contact with pig and contaminated meats.
Aquilaria crassna Pierre ex Lecomte, Thymelaeaceae, is cultivated for producing resinous heartwood, also called agarwood. Its leaves are a source of herbal tea in Vietnam due to its rich content of polyphenols. However, the α-glucosidase inhibition activity and the contents of phenolic compounds in leaves of different ages have not yet been determined. In the current study, 7 polyphenols [iriflophenone 3,5-C- β-D-diglucoside (1), iriflophenone 3-C- β-D-glucoside (2), mangiferin (3), iriflophenone 2- O- α-rhamnoside (4), genkwanin 5- O- β-primeveroside (5), genkwanin 4′-methyl ether 5- O- β-primeveroside (6), and genkwanin (7)] were isolated from the leaves of A crassna. Among them, genkwanin (7), an O-methylated flavone, was the most active compound that inhibited α-glucosidase activity, with an IC50 value of 24.0 μM. Molecular docking studies were performed to understand the binding interactions of the active compounds. In addition, a reliable and straightforward reversed-phase HPLC method was developed to determine the content of compounds in different leaves of A crassna. Mangiferin (3) showed the highest content. The contents of 1-4 contributed to the total polyphenolic contents and significantly decreased from the youngest to the oldest leaf. The contents of 5-7 fluctuated through various ages of leaves. Compounds 5 and 6 showed a low accumulation in the first and second leaves, then obtained high contents among middle leaves and declined in the oldest. These results suggested that A crassna and its polyphenols may prevent the development and progression of diabetes through α-glucosidase inhibition. Also, the analysis of the polyphenol content in A crassna may be helpful for tea product manufacture.
African swine fever (ASF) is a devastating viral disease in pigs and is therefore economically important for the swine industry. ASF is characterized by a short incubation period and immediate death, making the early identification of ASF-infected pigs essential. This pilot-scale study evaluates whether the infrared thermography (IRT) technique can be used as a diagnostic tool to detect changes in skin temperature (Tsk) during the early stages of disease development in experimentally ASF-infected pigs. Clinical symptoms and rectal temperatures (Tcore) were recorded daily, and IRT readings during the experimental ASF infection were analyzed. All infected pigs died at 5–8 days post inoculation (dpi), and the incubation period was approximately 4 dpi. The average Tcore increased from 0 dpi (38.9 ± 0.3 °C) to 7 dpi (41.0 ± 0.5 °C) and decreased by 8 dpi (39.8 ± 0 °C). The maximum Tsk of ASF-infected pigs increased from 2 (35.0 °C) to 3 dpi (38.5 °C). The mean maximum Tsk observed from three regions on the skin (ear, inguinal, and neck) significantly increased from 2 to 3 dpi. This study presents a non-contact method for the early detection of ASF in infected pigs using thermal imaging at 3 days after ASF infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.