With increasing clock frequencies and silicon integration, power aware computing has become a critical concern in the design of embedded processors and systems-on-chip. One of the more effective and widely used methods for poweraware computing is dynamic voltage scaling (DVS). In order to obtain the maximum power savings from DVS, it is essen- IntroductionA critical concern for embedded systems is the need to deliver high levels of performance given ever-diminishing power budgets. This is evident in the evolution of the mobile phone: in the last 7 years mobile phones have shown a 50X improvement in talk-time per gram of battery 1 , while at the same time taking on new computational tasks that only recently appeared on desktop computers, such as 3D graphics, audio/video, internet access, and gaming. As the breadth of applications for these devices widens, a single operating point is no longer sufficient to efficiently meet their processing and power consumption requirements. For example, MPEG video playback requires an order-of-magnitude higher performance than playing MP3s. However, running at the performance level necessary for video is energy-inefficient for audio. The gap between high performance and low power can be bridged through the use of dynamic voltage scaling (DVS) [16], where periods of low processor utilization are exploited by lowering the clock frequency to the minimum required level, allowing corresponding reduction in the supply voltage. Since dynamic energy scales quadratically with supply voltage, significant reduction in energy use can be obtained [14].Enabling systems to run at multiple frequency and voltage levels is a challenging process and requires characterization of the processor to ensure that its operation remains correct at the required operating points. The minimum possible supply voltage that results in correct operation is referred to as the critical supply voltage. The critical supply voltage must be sufficient to ensure correct operation in the face of a number of environmental and process related variabilities that can impact circuit performance. These include unexpected voltage drops in the power supply network, temperature fluctuations, gate-length and doping concentration variations, cross-coupling noise, etc. These variabilities may be data dependent, meaning that they exhibit their worst-case impact on circuit performance only under certain instruction and data sequences, and are composed of both local and global components. For instance, local process variations will impact specific regions of the die in different and independent ways, while global process variation impacts the circuit performance of the entire die and creates variation from one die to the next. Similarly, temperature and supply drop have local and global components, while cross-coupling noise is a predominantly local effect.To ensure correct operation under all possible variations, a conservative supply voltage is typically selected at designtime using corner analysis. Hence, margins are added ...
Having geographical proximity and a high volume of trade with China, the first country to record an outbreak of the new Coronavirus disease (COVID-19), Vietnam was expected to have a high risk of transmission. However, as of 4 April 2020, in comparison to attempts to containing the disease around the world, responses from Vietnam are seen as prompt and effective in protecting the interests of its citizens, with 239 confirmed cases and no fatalities. This study analyzes the situation in terms of Vietnam’s policy response, social media and science journalism. A self-made web crawl engine was used to scan and collect official media news related to COVID-19 between the beginning of January and April 4, yielding a comprehensive dataset of 14,952 news items. The findings shed light on how Vietnam—despite being under-resourced—has demonstrated political readiness to combat the emerging pandemic since the earliest days. Timely communication on any developments of the outbreak from the government and the media, combined with up-to-date research on the new virus by the Vietnamese science community, have altogether provided reliable sources of information. By emphasizing the need for immediate and genuine cooperation between government, civil society and private individuals, the case study offers valuable lessons for other nations concerning not only the concurrent fight against the COVID-19 pandemic but also the overall responses to a public health crisis.
Having geographical proximity and a high volume of trade with China, the first country to record an outbreak of the new Coronavirus disease (COVID-19), Vietnam was expected to have a high risk of transmission. However, as of 4 April 2020, in comparison to attempts to containing the disease around the world, responses from Vietnam are seen as prompt and effective in protecting the interests of its citizens, with 239 confirmed cases and no fatalities. This study analyzes the situation in terms of Vietnam’s policy response, social media and science journalism. A self-made web crawl engine was used to scan and collect official media news related to COVID-19 between the beginning of January and April 4, yielding a comprehensive dataset of 14,952 news items. The findings shed light on how Vietnam—despite being under-resourced—has demonstrated political readiness to combat the emerging pandemic since the earliest days. Timely communication on any developments of the outbreak from the government and the media, combined with up-to-date research on the new virus by the Vietnamese science community, have altogether provided reliable sources of information. By emphasizing the need for immediate and genuine cooperation between government, civil society and private individuals, the case study offers valuable lessons for other nations concerning not only the concurrent fight against the COVID-19 pandemic but also the overall responses to a public health crisis.
As a generation of ‘digital natives,’ secondary students who were born from 2002 to 2010 have various approaches to acquiring digital knowledge. Digital literacy and resilience are crucial for them to navigate the digital world as much as the real world; however, these remain under-researched subjects, especially in developing countries. In Vietnam, the education system has put considerable effort into teaching students these skills to promote quality education as part of the United Nations-defined Sustainable Development Goal 4 (SDG4). This issue has proven especially salient amid the COVID−19 pandemic lockdowns, which had obliged most schools to switch to online forms of teaching. This study, which utilizes a dataset of 1061 Vietnamese students taken from the United Nations Educational, Scientific, and Cultural Organization (UNESCO)’s “Digital Kids Asia Pacific (DKAP)” project, employs Bayesian statistics to explore the relationship between the students’ background and their digital abilities. Results show that economic status and parents’ level of education are positively correlated with digital literacy. Students from urban schools have only a slightly higher level of digital literacy than their rural counterparts, suggesting that school location may not be a defining explanatory element in the variation of digital literacy and resilience among Vietnamese students. Students’ digital literacy and, especially resilience, also have associations with their gender. Moreover, as students are digitally literate, they are more likely to be digitally resilient. Following SDG4, i.e., Quality Education, it is advisable for schools, and especially parents, to seriously invest in creating a safe, educational environment to enhance digital literacy among students.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.