An algorithm for computing the singular value decomposition of normal matrices using intermediate complex symmetric matrices is proposed. This algorithm, as most eigenvalue and singular value algorithms, consists of two steps. It is based on combining the unitarily equivalence of normal matrices to complex symmetric tridiagonal form with the symmetric singular value decomposition of complex symmetric matrices.Numerical experiments are included comparing several algorithms, with respect to speed and accuracy, for computing the symmetric singular value decomposition (also known as the Takagi factorization). Next we compare the novel approach with the classical Golub-Kahan method for computing the singular value decomposition of normal matrices: it is faster, consumes less memory, but on the other hand the results are significantly less accurate.
In this paper, we conjecture a formula for the value of the Pythagoras number for real multivariate sum of squares polynomials as a function of the (total or coordinate) degree and the number of variables. The conjecture is based on the comparison between the number of parameters and the number of conditions for a corresponding low-rank representation. This is then numerically verified for a number of examples. Additionally, we discuss the Pythagoras number of (complex) multivariate Laurent polynomials that are sum of square magnitudes of polynomials on the n-torus. For both types of polynomials, we also propose an algorithm to numerically compute the Pythagoras number and give some numerical illustrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.