In this study, a nanostructured NdFeO3 material was synthesized via a simple process of the hydrolysis of Nd (III) and Fe (III) cations in hot water with 5% NaOH as a precipitating agent. According to the results of the thermal behaviors of each hydroxide, either containing Fe (III) or Nd (III), the perovskite type of neodymium orthoferrite NdFeO3 was simply synthesized by annealing a mixture of Fe (III) and Nd (III) hydroxides at 750 °C. The nanostructured NdFeO3 was obtained in spherical granules with diameters of around 30 nm. The magnetic properties of the material were a coercive force (Hc) of 136.76 Oe, a remanent magnetization (Mr) of 0.68 emu·g–1, and a saturation magnetization (Ms) of 0.79 emu·g–1.
In this work, single-phase nanostructured NdFe1-xCoxO3 (x = 0, 0.1, 0.2, and 0.3) perovskite materials were obtained by annealing stoichiochemistry mixtures of their component hydroxides at 750 °C for 60 min. The partial substitution of Fe by Co in the NdFeO3 crystal lattice leads to significant changes in the structural characteristics, and as a consequence, also alters both the magnetic and optical properties of the resulting perovskites. The low optical band gap (Eg = 2.06 ÷ 1.46 eV) and high coercivity (Hc = 136.76 ÷ 416.06 Oe) give Co-doped NdFeO3 nanoparticles a huge advantage for application in both photocatalysis and hard magnetic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.