System lifetime is the crucial problem of Wireless Sensor Networks (WSNs), and exploiting environmental energy provides a potential solution for this problem. When considering self-powered systems, the Power Manager (PM) plays an important role in energy harvesting WSNs. Instead of minimizing the consumption energy as in the case of battery powered systems, it makes the harvesting node converge to Energy Neutral Operation (ENO) to achieve a theoretically infinite lifetime and maximize the system performance. In this paper, a low complexity PM with a Proportional Integral Derivative (PID) controller is introduced. This PM monitors the buffered energy in the storage device and performs adaptation by changing the wake-up period of the wireless node. This shows the interest of our approach since the impractical monitoring harvested energy as well as consumed energy is not required as it is the case in other previously proposed techniques. Experimental results are performed on a real WSN platform with two solar cells in an indoor environment. The PID controller provides a practical strategy for long-term operations of the node in various environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.