Gamma-aminobutyric acid (Gaba) is a non-proteinogenic amino acid that is widely present in microorganisms, plants, and vertebrates. So far, Gaba is well known as a main inhibitory neurotransmitter in the central nervous system. Its physiological roles are related to the modulation of synaptic transmission, the promotion of neuronal development and relaxation, and the prevention of sleeplessness and depression. Besides, various pharmaceutical properties of Gaba on non-neuronal peripheral tissues and organs were also reported due to anti-hypertension, anti-diabetes, anti-cancer, antioxidant, anti-inflammation, anti-microbial, anti-allergy, hepato-protection, reno-protection, and intestinal protection. Therefore, Gaba may be considered as potential alternative therapeutics for prevention and treatment of various diseases. Accordingly, this updated review was mainly focused to describe the pharmaceutical properties of Gaba as well as emphasize its important role regarding human health.
Rhodomyrtus tomentosa (Aiton) Hassk. is a flowering plant belonging to the family Myrtaceae, native to southern and southeastern Asia. It has been used in traditional Vietnamese, Chinese, and Malaysian medicine for a long time for the treatment of diarrhea, dysentery, gynecopathy, stomachache, and wound healing. Moreover, R. tomentosa is used to make various food products such as wine, tea, and jam. Notably, R. tomentosa has been known to contain structurally diverse and biologically active metabolites, thus serving as a potential resource for exploring novel functional agents. Up to now, numerous phenolic and terpenoid compounds from the leaves, root, or fruits of R. tomentosa have been identified, and their biological activities such as antioxidant, antibacterial, anti-inflammatory, and anticancer have been evidenced. In this contribution, an overview of R. tomentosa and its health beneficial properties was focused on and emphasized.
In this study, we isolated the phloroglucinol derivative, 1-(3',5'-dihydroxyphenoxy)-7-(2'',4'',6-trihydroxyphenoxy)-2,4,9-trihydroxydibenzo-1,4-dioxin (1), from Ecklonia cava and evaluated its potential inhibition on adipocyte differentiation in 3T3-L1 cells. Lipid accumulation along with the expression of several genes associated with adipogenesis and lipolysis was examined at the end of differentiation. Lipid accumulation level was examined by measuring triglyceride content and Oil-Red O staining. The expression levels of several genes and proteins were examined using reverse-transcription polymerase chain reaction (RT-PCR), real-time RT-PCR, and Western blot analysis. Compound 1 significantly reduced lipid accumulation and downregulated peroxisome proliferator-activated receptor-gamma, sterol regulatory element-binding protein 1c, and CCAAT/enhancer-binding proteins alpha in a dose-dependent manner. Moreover, the presence of compound 1 induced downregulation of adipogenic target genes such as fatty acid binding protein 4, fatty acid transport protein 1, fatty acid synthase, acyl-CoA synthetase 1, lipoprotein lipase, and leptin. According to the lipolytic response, compound 1 downregulated perilipin and hormone-sensitive lipase while upregulating tumor necrosis factor alpha. Therefore, these results suggest that compound 1 might decrease lipid accumulation during adipocyte differentiation by modulating adipogenesis and lipogenesis. Furthermore, compound 1 could be developed as a functional agent effective in improving obesity.
UV light, especially UVB, is known as a trigger of allergic reaction, leading to mast cell degranulation and histamine release. In this study, phlorotannin Fucofuroeckol-A (F-A) derived from brown algal Ecklonia stolonifera Okamura was evaluated for its protective capability against UVB-induced allergic reaction in RBL-2H3 mast cells. It was revealed that F-A significantly suppress mast cell degranulation via decreasing histamine release as well as intracellular Ca2+ elevation at the concentration of 50 μM. Moreover, the inhibitory effect of F-A on IL-1β and TNF-α productions was also evidenced. Notably, the protective activity of F-A against mast cell degranulation was found due to scavenging ROS production. Accordingly, F-A from brown algal E. stolonifera was suggested to be promising candidate for its protective capability against UVB-induced allergic reaction.
Diabetes is a major metabolic disorder whose prevalence is increasing daily. Medicinal plants have played an important role in the prevention and treatment of type 2 diabetes via prophylactic and therapeutic management. In this study, Mangifera Indica leaf (MIL) extract was investigated for its promising anti-diabetic activity via an in vitro model. It was found that MIL extract possessed significant inhibition on alpha-amylase activity up to (51.4 ± 2.7)% at a concentration of 200 µg/mL. Moreover, glucose adsorption capacity of MIL was identified at (2.7 ± 0.19) mM glucose/g extract. Furthermore, the extract caused a significant increase in glucose uptake up to (143 ± 9.3)% in LO-2 liver cells. Notably, MIL extract was effective in scavenging (63.3 ± 2.1)% 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and (71.6 ± 4.3)% 2,2-azinobis-3-ethyl benzothiazoline-6-sulfonic acid (ABTS)+ radicals and inhibiting (66 ± 4.9)% NO production from RAW264.7 cells without any cytotoxicity effects. Accordingly, M. indica leaves are suggested as a promising material for development of hypoglycemic products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.