The BOLD fMRI response in the cortex is often assumed to reflect changes in excitatory neural activity. However, the contribution of inhibitory neurons to BOLD fMRI is unclear. Here, the role of inhibitory and excitatory activity was examined using multimodal approaches: electrophysiological recording, 15.2 T fMRI, optical intrinsic signal imaging, and modeling. Inhibitory and excitatory neuronal activity in the somatosensory cortex were selectively modulated by 20-s optogenetic stimulation of VGAT-ChR2 and CaMKII-ChR2 mice, respectively. Somatosensory stimulation and optogenetic stimulation of excitatory neurons induced positive BOLD responses in the somatosensory network, whereas stimulation of inhibitory neurons produced biphasic responses at the stimulation site, initial positive and later negative BOLD signals, and negative BOLD responses at downstream sites. When the stimulation duration was reduced to 5 s, the hemodynamic response of VGAT-ChR2 mice to optogenetic stimulation was only positive. Lastly, modeling performed from neuronal and hemodynamic data shows that the hemodynamic response function (HRF) of excitatory neurons is similar across different conditions, whereas the HRF of inhibitory neurons is highly sensitive to stimulation frequency and peaks earlier than that of excitatory neurons. Our study provides insights into the neurovascular coupling of excitatory and inhibitory neurons and the interpretation of BOLD fMRI signals.
Functional magnetic resonance imaging (fMRI) with optogenetic neural manipulation is a powerful tool that enables brain-wide mapping of effective functional networks. To achieve flexible manipulation of neural excitation throughout the mouse cortex, we incorporated spatiotemporal programmable optogenetic stimuli generated by a digital micromirror device into an MR scanner via an optical fiber bundle for the first time. This approach offered versatility in space and time in planning the photostimulation pattern, combined with in situ optical imaging and cell-type or circuit-specific genetic targeting in individual mice. Brain-wide effective connectivity obtained by fMRI with optogenetic stimulation of atlas-based cortical regions is generally congruent with anatomically defined axonal tracing data but is affected by the types of anesthetics that act selectively on specific connections. fMRI combined with flexible optogenetics opens a new path to investigate dynamic changes in functional brain states in the same animal through high-throughput brain-wide effective connectivity mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.