PurposeThis paper proposes an approach to identify categorical influencers (i.e. influencers is the person who is active in the targeted categories) in social media channels. Categorical influencers are important for media marketing but to automatically detect them remains a challenge.Design/methodology/approachWe deployed the emerging deep learning approaches. Precisely, we used word embedding to encode semantic information of words occurring in the common microtext of social media and used variational autoencoder (VAE) to approximate the topic modeling process, through which the active categories of influencers are automatically detected. We developed a system known as Categorical Influencer Detection (CID) to realize those ideas.FindingsThe approach of using VAE to simulate the Latent Dirichlet Allocation (LDA) process can effectively handle the task of topic modeling on the vast dataset of microtext on social media channels.Research limitations/implicationsThis work has two major contributions. The first one is the detection of topics on microtexts using deep learning approach. The second is the identification of categorical influencers in social media.Practical implicationsThis work can help brands to do digital marketing on social media effectively by approaching appropriate influencers. A real case study is given to illustrate it.Originality/valueIn this paper, we discuss an approach to automatically identify the active categories of influencers by performing topic detection from the microtext related to the influencers in social media channels. To do so, we use deep learning to approximate the topic modeling process of the conventional approaches (such as LDA).
Most of the information on the Internet is represented in the form of microtexts, which are short text snippets such as news headlines or tweets. These sources of information are abundant, and mining these data could uncover meaningful insights. Topic modelling is one of the popular methods to extract knowledge from a collection of documents; however, conventional topic models such as latent Dirichlet allocation (LDA) are unable to perform well on short documents, mostly due to the scarcity of word co‐occurrence statistics embedded in the data. The objective of our research is to create a topic model that can achieve great performances on microtexts while requiring a small runtime for scalability to large datasets. To solve the lack of information of microtexts, we allow our method to take advantage of word embeddings for additional knowledge of relationships between words. For speed and scalability, we apply autoencoding variational Bayes, an algorithm that can perform efficient black‐box inference in probabilistic models. The result of our work is a novel topic model called the nested variational autoencoder, which is a distribution that takes into account word vectors and is parameterized by a neural network architecture. For optimization, the model is trained to approximate the posterior distribution of the original LDA model. Experiments show the improvements of our model on microtexts as well as its runtime advantage.
Abstract. This paper introduces PeCAn, a tool supporting compositional verification of Petri nets. Beyond classical features (such as onthe-fly analysis and synchronisation between multiple Petri nets), PeCAn generates Symbolic Observation Graphs (SOG), and uses their composition to support modular abstractions of multiple Petri nets for more efficient verification. Furthermore, PeCAn implements an incremental strategy based on counter-examples for model-checking, thus improving significantly the cost of execution time and memory space. PeCAn also provides users with the visualisation of the input Petri nets and their corresponding SOGs. We experimented PeCAn with benchmark datasets from the Petri Nets' model checking contests, showing promising results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.