Over the past decade, homogeneous mixing in microfluidic devices has been a critical challenge, because of the inherently low flow rates in microfluidic channels. Although several mixer designs have been suggested to achieve efficient mixing, most of them involve intricate structures requiring a series of laborious fabrication processes. Operation at high flow rates can greatly enhance mixing by induction of turbulence, but devices that can resist such a high pressure drop to induce turbulence in microfluidic channels are difficult to fabricate, especially for commonly used poly(dimethylsiloxane) (PDMS)-based microfluidic devices. We have developed a Y-shaped, turbulent microfluidic mixer made of PDMS and a glass substrate by strong bonding of the substrates to a nanoadhesive layer deposited via initiated chemical vapor deposition. The high bonding strength of the nanoadhesive layer enables safe operation of the PDMS/glass turbulent microfluidic mixer at a total water flow rate of 40 mL min(-1), corresponding to a Reynolds number, Re, of ~4423, one of the highest values achieved in a microfluidic channel. The turbulence generated as a result of the high Re allows rapid mixing of the input fluids on contact. Image analysis showed that mixing started as soon as the fluids were introduced into the mixer. The experimental results matched the numerical predictions well, demonstrating that convective mixing was dominant as a result of turbulence induced in the microfluidic channel. Using the turbulent microfluidic mixer, we have demonstrated high throughput formation of emulsions with narrower size distribution. It was shown that as the flow rate increases inside the microfluidic channel, the size distribution of resulting emulsions decreases owing to the increase in the turbulent energy dissipation. The turbulent microfluidic mixer developed in this work not only enables rapid mixing of streams, but also increases throughputs of microfluidic reactors.
Mammalian cells have been widely used in bioreactors to produce biological products such as pharmaceutical materials. The productivity of such bioreactors is vastly affected by flow-induced cell damage in complicated flow environments, such as agitation-driven turbulence and oxygen bubble bursting at the interface between the culturing medium and air. However, there is no systematic approach to diagnose the cell damage caused by the hydrodynamic stress. In this work, we propose a novel microfluidic method to accurately assess the mechanical cell damage under a controlled extensional stress field, generated in a microfluidic cross-slot geometry. The cell damage in the extensional field is related to the oxygen bubble bursting process. We employed viscoelasticity-induced particle focusing to align the cells along the shear-free channel centerline, so that all the cells experience a similar extensional stress field, which also precludes the cell damage due to wall shear stress. We applied our novel microfluidic sensor to find the critical extensional stress to damage Chinese hamster ovary (CHO) cells; the critical stress is found to be ∼250 Pa. Our current results are relevant in the design of practical bioreactors, as our results clearly demonstrate that the control of the bubble bursting process is critical in minimizing cell damage in bioreactor applications. Further, our results will provide useful information on the biophysical cell properties under fluid flow environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.