With the increasing prevalence of geo-enabled mobile phone applications, researchers can collect mobility data at a relatively high spatial and temporal resolution. Such data, however, lack semantic information such as the interaction of individuals with the transportation modes available. On the other hand, traditional mobility surveys provide detailed snapshots of the relation between socio-demographic characteristics and choice of transportation modes. Transportation mode detection is currently approached using features such as speed, acceleration and direction either on their own or in combination with GIS data. Combining such information with socio-demographic characteristics of travellers has the potential of offering a richer modelling framework that could facilitate better transportation mode detection using variables such as age and disability. In this paper, we explore the possibility to include both elements of the environment and individual characteristics of travellers in the task of transportation mode detection. Using dynamic Bayesian Networks, we model the transition matrix to account for such auxiliary data by using an informative Dirichlet prior constructed using data from traditional mobility surveys. Results have shown that it is possible to achieve comparable accuracy with the most widely used classification algorithms while having a rich modelling framework, even in the case of sparse mobility data.
Human activity type inference has long been the focus for applications ranging from managing transportation demand to monitoring changes in land use patterns. Today’s ever increasing volume of mobility data allow researchers to explore a wide range of methodological approaches for this task. Such data, however, lack reference observations that would allow the validation of methodological approaches. This research proposes a methodological framework for urban activity type inference using a Dirichlet multinomial dynamic Bayesian network with an empirical Bayes prior that can be applied to mobility data of low spatiotemporal resolution. The method was validated using open source Foursquare data under different isochrone configurations. The results provide evidence of the limits of activity detection accuracy using such data as determined by the Area Under Receiving Operating Curve (AUROC), log-loss, and accuracy metrics. At the same time, results demonstrate that a hierarchical modeling framework can provide some flexibility against the challenges related to the nature of unsupervised activity classification using trajectory variables and POIs as input.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.