Protein tyrosine (Tyr) phosphorylation plays a central role in many signaling pathways leading to cell growth and differentiation in animals. Tyr phosphorylated proteins have been detected in higher plants, and the roles of protein Tyr phosphatases and protein Tyr kinases in some physiological responses have been shown. We investigated the involvement of Tyr phosphorylation events in abscisic acid (ABA) signaling using a pharmacological approach. Phenylarsine oxide, a specific inhibitor of protein Tyr phosphatase activity, abolished the ABA-dependent accumulation of RAB18 (responsive to ABA 18) transcripts. Protein Tyr kinase inhibitors like genistein, tyrphostin A23, and erbstatin blocked the RAB18 expression induced by ABA in Arabidopsis (Arabidopsis thaliana). Stomatal closure induced by ABA was also inhibited by phenylarsine oxide and genistein. We studied the changes in the Tyr phosphorylation levels of proteins in Arabidopsis seeds after ABA treatment. Proteins were separated by two-dimensional gel electrophoresis, and those phosphorylated on Tyr residues were detected using an anti-phosphotyrosine antibody by western blot. Changes were detected in the Tyr phosphorylation levels of 19 proteins after ABA treatment. Genistein inhibited the ABA-dependent Tyr phosphorylation of proteins. The 19 proteins were analyzed by matrix-assisted laser-desorption ionization time-of-flight/time-of-flight mass spectrometry. Among the proteins identified were storage proteins like cruciferins, enzymes involved in the mobilization of lipid reserves like aconitase, enolase, aldolase, and a lipoprotein, and enzymes necessary for seedling development like the large subunit of Rubisco. Additionally, the identification of three putative signaling proteins, a peptidyl-prolyl isomerase, an RNA-binding protein, and a small ubiquitin-like modifier-conjugating enzyme, enlightens how Tyr phosphorylation might regulate ABA transduction pathways in plants.
Proline accumulates in many plant species in response to environmental stresses. Upon relief from stress, proline is rapidly oxidized in mitochondria by proline dehydrogenase (ProDH) and then by pyrroline-5-carboxylate dehydrogenase (P5CDH). Two ProDH genes have been identified in the genome of the model plant Arabidopsis thaliana To gain a better understanding of ProDH1 functions in mitochondria, proteomic analysis was performed. ProDH1 polypeptides were identified in Arabidopsis mitochondria by immunoblotting gels after 2D blue native (BN)-SDS/PAGE, probing them with an anti-ProDH antibody and analysing protein spots by MS. The 2D gels showed that ProDH1 forms part of a low-molecular-mass (70-140 kDa) complex in the mitochondrial membrane. To evaluate the contribution of each isoform to proline oxidation, mitochondria were isolated from wild-type (WT) and prodh1, prodh2, prodh1prodh2 and p5cdh mutants. ProDH activity was high for genotypes in which ProDH, most likely ProDH1, was strongly induced by proline. Respiratory measurements indicate that ProDH1 has a role in oxidizing excess proline and transferring electrons to the respiratory chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.