Granule-bound starch synthase 2 (GBSSII), a paralogous isoform of GBSSI, carries out amylose biosynthesis in rice. Unlike GBSSI, it mainly functions in transient organs, such as leaves. Despite many reports on the starch gene family, little is known about the genetics and genomics of GBSSII. Haplotype analysis was conducted to unveil genetic variations (SNPs and InDels) of GBSSII (OS07G0412100) and it was also performed to gain evolutionary insight through genetic diversity, population genetic structure, and phylogenetic analyses using the KRICE_CORE set (475 rice accessions). Thirty nonsynonymous SNPs (nsSNPs) were detected across the diverse GBSSII coding regions, representing 38 haplotypes, including 13 cultivated, 21 wild, and 4 mixed (a combination of cultivated and wild) varieties. The cultivated haplotypes (C_1–C_13) contained more nsSNPs across the GBSSII genomic region than the wild varieties. Nucleotide diversity analysis highlighted the higher diversity values of the cultivated varieties (weedy = 0.0102, landrace = 0.0093, and bred = 0.0066) than the wild group (0.0045). The cultivated varieties exhibited no reduction in diversity during domestication. Diversity reduction in the japonica and the wild groups was evidenced by the negative Tajima’s D values under purifying selection, suggesting the domestication signatures of GBSSII; however, balancing selection was indicated by positive Tajima’s D values in indica. Principal component analysis and population genetics analyses estimated the ambiguous evolutionary relationships among the cultivated and wild rice groups, indicating highly diverse structural features of the rice accessions within the GBSSII genomic region. FST analysis differentiated most of the classified populations in a range of greater FST values. Our findings provide evolutionary insights into GBSSII and, consequently, a molecular breeding program can be implemented for select desired traits using these diverse nonsynonymous (functional) alleles.
Betaine aldehyde dehydrogenase 1 (BADH1), a paralog of the fragrance gene BADH2, is known to be associated with salt stress through the accumulation of synthesized glycine betaine (GB), which is involved in the response to abiotic stresses. Despite the unclear association between BADH1 and salt stress, we observed the responses of eight phenotypic characteristics (germination percentage (GP), germination energy (GE), germination index (GI), mean germination time (MGT), germination rate (GR), shoot length (SL), root length (RL), and total dry weight (TDW)) to salt stress during the germination stage of 475 rice accessions to investigate their association with BADH1 haplotypes. We found a total of 116 SNPs and 77 InDels in the whole BADH1 gene region, representing 39 haplotypes. Twenty-nine haplotypes representing 27 mutated alleles (two InDels and 25 SNPs) were highly (p < 0.05) associated with salt stress, including the five SNPs that have been previously reported to be associated with salt tolerance. We observed three predominant haplotypes associated with salt tolerance, Hap_2, Hap_18, and Hap_23, which were Indica specific, indicating a comparatively high number of rice accessions among the associated haplotypes. Eight plant parameters (phenotypes) also showed clear responses to salt stress, and except for MGT (mean germination time), all were positively correlated with each other. Different signatures of domestication for BADH1 were detected in cultivated rice by identifying the highest and lowest Tajima’s D values of two major cultivated ecotypes (Temperate Japonica and Indica). Our findings on these significant associations and BADH1 evolution to plant traits can be useful for future research development related to its gene expression.
Granule-bound starch synthase I (GBSSI) is responsible for Waxy gene encoding the, which is involved in the amylose synthesis step of starch biosynthesis. We investigated the genotypic and haplotypic variations of GBSSI (Os06g0133000) gene, including its evolutionary relatedness in the nucleotide sequence level using single-nucleotide polymorphisms (SNPs), indels, and structural variations (SVs) from 475 Korean World Rice Collection (KRICE_CORE), which comprised 54 wild rice and 421 cultivated represented by 6 ecotypes (temperate japonica, indica, tropical japonica, aus, aromatic, and admixture) or in another way by 3 varietal types (landrace, weedy, and bred). The results revealed that 27 of 59 haplotypes indicated a total of 12 functional SNPs (fSNPs), identifying 9 novel fSNPs. According to the identified novel fSNPs, we classified the entire rice collection into three groups: cultivated, wild, and mixed (cultivated and wild) rice. Five novel fSNPs were localized in wild rice: four G/A fSNPs in exons 2, 9, and 12 and one T/C fSNP in exon 13. We also identified the three previously reported fSNPs, namely, a G/A fSNP (exon 4), an A/C fSNP (exon 6), and a C/T fSNP (exon 10), which were observed only in cultivated rice, whereas an A/G fSNP (exon 4) was observed exclusively in wild rice. All-against-all comparison of four varietal types or six ecotypes of cultivated rice with wild rice showed that the GBSSI diversity was higher only in wild rice (π = 0.0056). The diversity reduction in cultivated rice can be useful to encompass the origin of this gene GBSSI during its evolution. Significant deviations of positive (wild and indica under balancing selection) and negative (temperate and tropical japonica under purifying selection) Tajima's D values from a neutral model can be informative about the selective sweeps of GBSSI genome insights. Despite the estimation of the differences in population structure and principal component analysis (PCA) between wild and subdivided cultivated subgroups, an inbreeding effect was quantified by FST statistic, signifying the genetic relatedness of GBSSI. Our findings of a novel wild fSNPS can be applicable for future breeding of waxy rice varieties. Furthermore, the signatures of selective sweep can also be of informative into further deeper insights during domestication.
Early season flooding is a major constraint in direct-seeded rice, as rice genotypes vary in their coleoptile length during anoxia. Trehalose-6-phosphate phosphatase 7 (OsTPP7, Os09g0369400) has been identified as the genetic determinant for anaerobic germination (AG) and coleoptile elongation during flooding. We evaluated the coleoptile length of a diverse rice panel under normal and flooded conditions and investigated the Korean rice collection of 475 accessions to understand its genetic variation, population genetics, evolutionary relationships, and haplotypes in the OsTPP7 gene. Most accessions displayed enhanced flooded coleoptile lengths, with the temperate japonica ecotype exhibiting the highest average values for normal and flooded conditions. Positive Tajima’s D values in indica, admixture, and tropical japonica ecotypes suggested balancing selection or population expansion. Haplotype analysis revealed 18 haplotypes, with three in cultivated accessions, 13 in the wild type, and two in both. Hap_1 was found mostly in japonica, while Hap-2 and Hap_3 were more prevalent in indica accessions. Further phenotypic performance of major haplotypes showed significant differences in flooded coleoptile length, flooding tolerance index, and shoot length between Hap_1 and Hap_2/3. These findings could be valuable for future selective rice breeding and the development of efficient haplotype-based breeding strategies for improving flood tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.