Acrylic bone cements, although successful in the field of orthopedics, suffer from a lack of bioactivity, not truly integrating with surrounding bone. Bioactive fixation is expected to enhance cement performance because of the natural interlocking and bonding with bone, which can improve the augmentative potential of the material in applications such as vertebroplasty (VP). In a recent study, two composite cements (PMMA-hydroxyapatite and PMMA-brushite) showed promising results demonstrating no deterioration in rheological and mechanical properties after CaP filler addition. In this study, the dynamic properties of the cements were investigated in vitro and in vivo. The hypothesis was that these composite cements will provide osseointegration around the implanted cement and increase new bone formation, thus decreasing the risk of bone structural failure. The effects of CaP elution were thus analyzed in vitro using these cements. Mass-loss, pore formation, and mechanical changes were tracked after cement immersion in Hank’s salt solution. PMMA-brushite was the only cement with a significant mass loss; however it showed low bulk porosity. Surface porosity increases were observed in both composite cements. Mechanical properties were maintained after cement immersion. In vitro culture studies tested preosteoblast cell viability and differentiation on the cement surface. Cell viability was demonstrated with MTT assay and confirmed on the cement surface. ALP assays showed no inhibition of osteoblast differentiation on the cement surface. In vivo experiments were performed using a rat tibiae model to demonstrate bone ingrowth around the implanted cements. Critical size defects were created and then filled with the cements. The animal studies showed no loss in mechanical strength after implantation and increased bone ingrowth around the composite cements. In summary, the composite cements provided bioactivity without sacrificing mechanical strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.