The COVID-19 pandemic has exposed the vulnerability of healthcare services worldwide, raising the need to develop novel tools to provide rapid and cost-effective screening and diagnosis. Clinical reports indicated that COVID-19 infection may cause cardiac injury, and electrocardiograms (ECG) may serve as a diagnostic biomarker for COVID-19. This study aims to utilize ECG signals to detect COVID-19 automatically. We propose a novel method to extract ECG signals from ECG paper records, which are then fed into one-dimensional convolution neural network (1D-CNN) to learn and diagnose the disease. To evaluate the quality of digitized signals, R peaks in the paper-based ECG images are labeled. Afterward, RR intervals calculated from each image are compared to RR intervals of the corresponding digitized signal. Experiments on the COVID-19 ECG images dataset demonstrate that the proposed digitization method is able to capture correctly the original signals, with a mean absolute error of 28.11 ms. The 1D-CNN model (SEResNet18), which is trained on the digitized ECG signals, allows to identify between individuals with COVID-19 and other subjects accurately, with classification accuracies of 98.42% and 98.50% for classifying COVID-19 vs. Normal and COVID-19 vs. other classes, respectively. Furthermore, the proposed method also achieves a high-level of performance for the multi-classification task. Our findings indicate that a deep learning system trained on digitized ECG signals can serve as a potential tool for diagnosing COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.