This study investigates GT-1 (also known as LCB10-0200), a novel-siderophore cephalosporin, inhibited multidrug-resistant (MDR) Gram-negative pathogen, via a Trojan horse strategy exploiting iron-uptake systems. We investigated GT-1 activity and the role of siderophore uptake systems, and the combination of GT-1 and a non-β-lactam β-lactamase inhibitor (BLI) of diazabicyclooctane, GT-055, (also referred to as LCB18-055) against molecularly characterised resistant Escherichia coli, Klebsiella pneumoniae and Acinetobacter spp. isolates. GT-1 and GT-1/GT-055 were tested in vitro against comparators among three different characterised panel strain sets. Bacterial resistome and siderophore uptake systems were characterised to elucidate the genetic basis for GT-1 minimum inhibitory concentrations (MICs). GT-1 exhibited in vitro activity (≤2 μg/mL MICs) against many MDR isolates, including extended-spectrum β-lactamase (ESBL)- and carbapenemase-producing E. coli and K. pneumoniae and oxacillinase (OXA)-producing Acinetobacter spp. GT-1 also inhibited strains with mutated siderophore transporters and porins. Although BLI GT-055 exhibited intrinsic activity (MIC 2–8 μg/mL) against most E. coli and K. pneumoniae isolates, GT-055 enhanced the activity of GT-1 against many GT-1–resistant strains. Compared with CAZ-AVI, GT-1/GT-055 exhibited lower MICs against E. coli and K. pneumoniae isolates. GT-1 demonstrated potent in vitro activity against clinical panel strains of E. coli, K. pneumoniae and Acinetobacter spp. GT-055 enhanced the in vitro activity of GT-1 against many GT-1–resistant strains.
BackgroundThe existing modified carbapenem inactivation methods (mCIMs) recommended by the CLSI for detecting carbapenemase production have not been applicable for Acinetobacter baumannii. We evaluated the influence of matrices used in mCIMs and CIMTris on the stability of the disks for detecting carbapenemase producers and suggested optimal mCIM conditions for detecting carbapenemase-producing A. baumannii.MethodsSeventy-three A. baumannii isolates characterized for antimicrobial susceptibility and carbapenemase encoding genes were tested for carbapenemase production using mCIM and CIMTris. The influence of the matrices (Tryptic soy broth [TSB] and Tris-HCl) used in these methods on the stability of the meropenem (MEM) disk was also evaluated. The mCIM conditions were adjusted to enhance screening sensitivity and specificity for detecting carbapenemase-producing A. baumannii.ResultsThe matrices had an impact on the stability of the MEM disk after the incubation period (two or four hrs). TSB nutrient broth is an appropriate matrix for mCIM compared with Tris-HCl pH 7.6, which leads to the loss of MEM activity in CIMTris. The sensitivity and the specificity of the optimal mCIM were both 100%.ConclusionsWe established optimal mCIM conditions for simple, accurate, and reproducible detection of carbapenemase-producing A. baumannii.
Acinetobacter spp. have emerged as significant pathogens causing nosocomial infections. Treatment of these pathogens has become a major challenge to clinicians worldwide, due to their increasing tendency to antibiotic resistance. To address this, much revenue and technology are currently being dedicated toward developing novel drugs and antibiotic combinations to combat antimicrobial resistance. To address this issue, we have constructed a panel of Acinetobacter spp. strains expressing different antimicrobial resistance determinants such as narrow spectrum β-lactamases, extended-spectrum β-lactamases, OXA-type-carbapenemase, metallo-beta-lactamase, and over-expressed AmpC β-lactamase. Bacterial strains exhibiting different resistance phenotypes were collected between 2008 and 2013 from Severance Hospital, Seoul. Antimicrobial susceptibility was determined according to the CLSI guidelines using agar dilution method. Selected strains were sequenced using Ion Torrent PGM system, annotated using RAST server and analyzed using Geneious pro 8.0. Genotypic determinants, such as acquired resistance genes, changes in the expression of efflux pumps, mutations, and porin alternations, contributing to the relevant expressed phenotype were characterized. Isolates expressing ESBL phenotype consisted of bla PER−1 gene, the overproduction of intrinsic AmpC beta-lactamase associated with IS Aba1 insertion, and carbapenem resistance associated with production of carbapenem-hydrolyzing Ambler class D β-lactamases, such as OXA-23, OXA-66, OXA-120, OXA-500, and metallo-β-lactamase, SIM-1. We have analyzed the relative expression of Ade efflux systems, and determined the sequences of their regulators to correlate with phenotypic resistance. Quinolone resistance-determining regions were analyzed to understand fluoroquinolone-resistance. Virulence factors responsible for pathogenesis were also identified. Due to several mutations, acquisition of multiple resistance genes and transposon insertion, phenotypic resistance decision scheme for for evaluating the resistance proved inaccurate, which highlights the urgent need for modification to this scheme. This complete illustration of mechanism contributing to specific resistance phenotypes can be used as a target for novel drug development. It can also be used as a reference strain in the clinical laboratory and for the evaluation of antibiotic efficacy for specific resistance mechanisms.
Recently, a bla NDM-9 and mcr-1 co-harboring E. coli ST 617 isolate was identified from an asymptomatic carrier in Korea. An 81-year-old female was admitted to a university hospital for aortic cardiac valve repair surgery. Following surgery, she was admitted to the intensive care unit (ICU) for three days, and carbapenem-resistant E. coli YMC/2017/02/MS631 was isolated from a surveillance culture (rectal swab). Antimicrobial susceptibility testing (AST) for colistin was not performed at that time. Upon retrospective study, further AST revealed resistance to all tested antibiotics, including meropenem, imipenem, ceftazidime-avibactam, amikacin, gentamicin, ciprofloxacin, trimethoprim-sulfamethoxazole, and colistin, with the exception of tigecycline. Whole genome sequencing analyses showed that this strain belonged to the ST617 serotype O89/162: H10 and harbored three β-lactamase genes (bla TEM-1B , bla CTX-M-55 , bla NDM-9 ), mcr-1, and 14 other resistance genes. Seven plasmid replicon types (IncB, IncFII, IncI2, IncN, IncY, IncR, IncX1) were identified. Horizontal transfer of bla NDM-9 and mcr-1 from donor cells to the recipient E. coli J53 has been observed. bla NDM-9 and mcr-1 were carried by IncB and IncI2 plasmids, respectively. To speculate on the incidence of this strain, routine rectal swab screening to identify asymptomatic carriers might be warranted, in addition to the screening of ICU patients.
Background A complex cascade of genes, enzymes, and transcription factors regulates AmpC β-lactamase overexpression. We investigated the network of AmpC β-lactamase overexpression in Klebsiella aerogenes and identified the role of AmpG in resistance to β-lactam agents, including cephalosporins and carbapenems. Methods A transposon mutant library was created for carbapenem-resistant K. aerogenes YMC2008-M09-943034 (KE-Y1) to screen for candidates with increased susceptibility to carbapenems, which identified the susceptible mutant derivatives KE-Y3 and KE-Y6. All the strains were subjected to highly contiguous de novo assemblies using PacBio sequencing to investigate the loss of resistance due to transposon insertion. Complementation and knock-out experiments using lambda Red-mediated homologous recombinase and CRISPR–Cas9 were performed to confirm the role of gene of interest. Results In-depth analysis of KE-Y3 and KE-Y6 revealed the insertion of a transposon at six positions in each strain, at which truncation of the AmpG permease gene was common in both. The disruption of the AmpG permease leads to carbapenem susceptibility, which was further confirmed by complementation. We generated an AmpG permease gene knockout using lambda Red-mediated recombineering in K. aerogenes KE-Y1 and a CRISPR–Cas9-mediated gene knockout in multidrug-resistant Klebsiella pneumoniae-YMC/2013/D to confer carbapenem susceptibility. Conclusions These findings suggest that inhibition of the AmpG is a potential strategy to increase the efficacy of β-lactam agents against Klebsiella aerogenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.