In an effort to identify acute myeloid leukemia (AML)-restricted targets for therapeutic development in AML, we analyzed the transcriptomes of 2051 children and young adults with AML and compared the expression profile with normal marrow specimens. This analysis identified a large cohort of AML-restricted genes with high expression in AML, but low to no expression in normal hematopoiesis. Mesothelin (MSLN), a known therapeutic target in solid tumors, was shown to be highly overexpressed in 36% of the AML cohort (range, 5-1077.6 transcripts per million [TPM]) and virtually absent in normal marrow (range, 0.1-10.7 TPM). We verified MSLN transcript expression by quantitative reverse transcription polymerase chain reaction, confirmed cell surface protein expression on leukemic blasts by multidimensional flow cytometry, and demonstrated that MSLN expression was associated with promoter hypomethylation. MSLN was highly expressed in patients with KMT2A rearrangements (P < .001), core-binding factor fusions [inv(16)/t(16;16), P < .001; t(8;21), P < .001], and extramedullary disease (P = .001). We also demonstrated the presence of soluble MSLN in diagnostic serum specimens using an MSLN-directed enzyme-linked immunosorbent assay. In vitro and in vivo preclinical efficacy of the MSLN-directed antibody-drug conjugates (ADCs) anetumab ravtansine and anti-MSLN–DGN462 were evaluated in MSLN+ leukemia cell lines in vitro and in vivo, as well as in patient-derived xenografts. Treatment with ADCs resulted in potent target-dependent cytotoxicity in MSLN+ AML. In this study, we demonstrate that MSLN is expressed in a significant proportion of patients with AML and holds significant promise as a diagnostic and therapeutic target in AML, and that MSLN-directed therapeutic strategies, including ADCs, warrant further clinical investigation.
The CBFA2T3-GLIS2 (C/G) fusion is a product of a cryptic translocation primarily seen in infants and early childhood and is associated with dismal outcome. Here, we demonstrate that the expression of the C/G oncogenic fusion protein promotes the transformation of human cord blood hematopoietic stem and progenitor cells (CB HSPCs) in an endothelial cell coculture system that recapitulates the transcriptome, morphology, and immunophenotype of C/G acute myeloid leukemia (AML) and induces highly aggressive leukemia in xenograft models. Interrogating the transcriptome of C/G-CB cells and primary C/G AML identified a library of C/G-fusion-specific genes that are potential targets for therapy. We developed chimeric antigen receptor (CAR) T cells directed against one of the targets, folate receptor α (FOLR1), and demonstrated their preclinical efficacy against C/G AML using in vitro and xenograft models. FOLR1 is also expressed in renal and pulmonary epithelium, raising concerns for toxicity that must be addressed for the clinical application of this therapy. Our findings underscore the role of the endothelial niche in promoting leukemic transformation of C/G-transduced CB HSPCs. Furthermore, this work has broad implications for studies of leukemogenesis applicable to a variety of oncogenic fusion-driven pediatric leukemias, providing a robust and tractable model system to characterize the molecular mechanisms of leukemogenesis and identify biomarkers for disease diagnosis and targets for therapy.
has equity ownership in Hematologics, Inc. S.F. holds provisional patents filed on the use of CAR-T cell therapy for hematologic malignancies and is a medical and scientific advisor for Link Immunotherapeutics. C.J.T receives research funding from Juno Therapeutics/BMS, Nektar Therapeutics, Minerva, AstraZeneca, TCR 2 Therapeutics; is a member of scientific advisory boards for Precision Biosciences, Eureka Therapeutics, Caribou Biosciences, T-CURX, Myeloid Therapeutics, ArsenalBio, and Century Therapeutics; has served on an ad hoc advisory board (last 12 months) for Amgen; holds stock options in Precision Biosciences, Eureka Therapeutics, Caribou Biosciences, Myeloid Therapeutics, and ArsenalBio; and receives royalties for unrelated patents licensed to Juno Therapeutics/BMS. All other authors declare no competing financial interests.Research.
Fusion oncoproteins are the initiating event in AML pathogenesis, although they are thought to require additional cooperating mutations for leukemic transformation. CBFA2T3-GLIS2 (C/G) fusion occurs exclusively in infants and is associated with highly aggressive disease1-4. Here we report that lentiviral transduction of C/G fusion is sufficient to induce malignant transformation of human cord blood hematopoietic stem and progenitor cells (CB HSPCs) that fully recapitulates C/G AML. Engineered CB HSPCs co-cultured with endothelial cells undergo complete malignant transformation with identical molecular, morphologic, phenotypic and disease characteristics observed in primary C/G AML. Interrogating the transcriptome of engineered cells identified a library of C/G fusion-specific targets that are candidates for chimeric antigen receptor (CAR) T cell therapy. We developed CAR-T cells directed against one of the targets, FOLR1, and demonstrated the pre-clinical efficacy against C/G AML while sparing normal hematopoiesis. Our findings underscore the role of the endothelial niche in promoting leukemic transformation of C/G-transduced CB HSPCs. Moreover, this work has broad implications for studies of leukemogenesis applicable to a variety of oncogenic fusion-driven pediatric leukemias, providing a robust and tractable model system to characterize the molecular mechanisms of leukemogenesis and identify biomarkers for disease diagnosis and targets for therapy.
Preferentially Expressed Antigen in Melanoma (PRAME) , a cancer testes antigen provides an ideal target for immunotherapy in AML. We have shown expression of PRAME in a significant subset of childhood and adult AML and lack of expression in normal hematopoiesis. Although an intracellular antigen, we developed a novel approach to target PRAME using a CAR construct encoding a targeting domain based on T cell receptor (TCR) mimic antibodies that targets the peptide:HLA complex. We used the antibody sequence from a previously designed antibody, Pr20, a TCR mimic antibody that recognizes PRAME ALY peptide in complex with HLA-A*02 and verified expression of PRAME in AML cell lines and primary AML blasts. Using the Pr20 antibody sequence, we developed CAR T cells (PRAME mTCRCAR T) to be tested against primary AML patient samples and AML cell lines that express the PRAME antigen in the context of HLA-A2 expression. In contrast to the appropriate controls, PRAME mTCRCAR T cells demonstrate target specific and HLA-mediated in vitro activity in OCI-AML2 and THP-1 cell lines, HLA-A2 cell lines expressing the PRAME antigen, and against primary AML patient samples. In vivo cell-derived xenograft models treated with PRAME mTCRCAR T cells demonstrated potent leukemia clearance and improved survival compared to unmodified T-cell controls. Furthermore, the cytolytic activity of PRAME mTCRCAR T cells was enhanced by treating the target cells with IFN-γ, which increases PRAME antigen expression. These results demonstrate the feasibility and efficacy of targeting PRAME with novel PRAME mTCRCAR T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.