Dispensing of antibiotics for mild ARI was common practice among private pharmacies, and there was a significant difference between knowledge and practice. Interventions are needed to improve pharmacy practice in Hanoi.
BackgroundIncorrect use of inhalers is very common and subsequently leads to poor control of COPD. Among health care providers, pharmacists are in the best position to educate patients about the correct use of inhaler devices.ObjectiveThe objective of this study was to evaluate the impact of pharmacist-led training on the improvement of inhaler technique for COPD patients in Vietnam.Patients and methodsFor this pre- and post-intervention study, standardized checklists of correct use of metered-dose inhalers (MDIs) and dry powder inhalers (DPIs) were used to evaluate the inhaler technique. A scoring system (maximum score =8) was applied before and after training to guarantee assessment uniformity among pharmacists. Three methods including “face-to-face training”, “teach-back” and “technique reminder label” were used. After the baseline evaluation (T0), the inhaler technique was reassessed after 1 month (T1), 3 months (T2), 6 months (T3) and 12 months (T4).ResultsA total of 211 COPD patients participated in the study. Before the training, a high rate of errors was recorded. After the training, the percentage of patients using MDIs and DPIs perfectly increased significantly (p<0.05). The mean technique score for MDIs and DPIs improved from 6.0 (T0) to 7.5 (T3) and 6.9 (T4) and 6.7 (T0) to 7.6 (T3) and 7.2 (T4), respectively (p<0.05). The average training time was 6 minutes (T0) and 3 minutes (T3), respectively.ConclusionPharmacist-led comprehensive inhaler technique intervention program using an unbiased and simple scoring system can significantly improve the inhaler techniques in COPD patients. Our results indicated a 3-month period as the optimal time period between training and retraining for maintaining the correct inhaler technique. The training would be highly feasible and suitable for implementing in the clinical setting. Our model of pharmacist-led training should be considered as an effective solution for managing COPD patients and better utilization of health care human resources, especially in a developing country like Vietnam.
This study investigates the photocatalytic degradation of amoxicillin (AMO) by simulated solar irradiation using WO 3 as a catalyst. A three-factor-three-level Box-Behnken design (BBD) consisting of 30 experimental runs is employed with three independent variables: initial AMO concentration, catalyst dosage, and pH. The experimental results are analyzed in terms of AMO degradation and mineralization, the latter of which is measured using dissolved organic carbon (DOC). The results show that the photocatalytic degradation of AMO follows pseudo-first-order kinetics. AMO degradation efficiency and the pseudo-first-order rate constants decrease with increasing initial AMO concentration and pH and increase with increasing catalyst dosage. Though AMO degradation is almost fully complete under the experimental conditions, DOC removal is much lower; the highest DOC removal rate is 35.82% after 180 min. Using these experimental results, second-order polynomial response surface models for AMO and DOC removal are constructed. In the AMO removal model, the first-order terms are the most significant contributors to the prediction, followed by the quadratic and interaction terms. Initial AMO concentration and pH have a significant negative impact on the photocatalytic degradation of AMO, while catalyst dosage has a significant positive impact. In contrast, in the DOC removal model, the quadratic terms make the most significant contribution to the prediction and the first-order terms the least. The optimal conditions for the photocatalytic degradation of AMO are found to be an initial AMO concentration of 1.0 μM, a catalyst dosage of 0.104 g/L, and a pH of 4, under which almost complete removal of AMO is achieved (99.99%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.