BackgroundAs dengue spreads to new geographical regions and the force of infection changes in existing endemic areas, a greater breadth of clinical presentations is being recognised. Clinical experience suggests that adults manifest a pattern of complications different from those observed in children, but few reports have described the age-related spectrum of disease in contemporaneous groups of patients recruited at the same geographical location.Methodology/Principal FindingsUsing detailed prospectively collected information from ongoing studies that encompass the full spectrum of hospitalised dengue cases admitted to a single hospital in southern Vietnam, we compared clinical and laboratory features, management, and outcome for 647 adults and 881 children with confirmed dengue. Signs of vascular leakage and shock were more frequent and more severe in children than adults, while bleeding manifestations and organ involvement were more common in adults. Additionally, adults experienced significantly more severe thrombocytopenia. Secondary infection but not serotype was independently associated with greater thrombocytopenia, although with a smaller effect than age-group. The effect of age-group on platelet count was also apparent in the values obtained several weeks after recovery, indicating that healthy adults have intrinsically lower counts compared to children.Conclusions/SignificanceThere are clear distinctions between adults and children in the pattern of complications seen in association with dengue infection, and these depend partly on intrinsic age-dependent physiological differences. Knowledge of such differences is important to inform research on disease pathogenesis, as well as to encourage development of management guidelines that are appropriate to the age-groups at risk.
Tilapia tilapinevirus (also known as tilapia lake virus, TiLV) is considered to be a new threat to the global tilapia industry. The objective of this study was to develop simple cell culture-based heat-killed (HKV) and formalin-killed (FKV) vaccines for the prevention of disease caused by TiLV. The fish were immunized with 100 µl of either HKV or FKV by intraperitoneal injection with each vaccine containing 1.8 × 10 6 TCID 50-inactivated virus. A booster vaccination was carried out at 21-day postvaccination (dpv) using the same protocol. The fish were then challenged with a lethal dose of TiLV at 28 dpv. The expression of five immune genes (IgM, IgD, IgT, CD4 and CD8) in the head kidney and spleen of experimental fish was assessed at 14 and 21 dpv and again after the booster vaccination at 28 dpv. TiLV-specific IgM responses were measured by ELISA at the same time points. The results showed that both vaccines conferred significant protection, with relative percentage survival of 71.3% and 79.6% for HKV and FKV, respectively. Significant up-regulation of IgM and IgT was observed in the head kidney of fish vaccinated with HKV at 21 dpv, while IgM, IgD and CD4 expression increased in the head kidney of fish receiving FKV at the same time point. After booster vaccination, IgT and CD8 transcripts were significantlyThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Tilapia tilapinevirus (also known as tilapia lake virus, TiLV) is considered to be a new threat to the global tilapia industry. The objective of this study was to develop simple cell culture-based heat-killed (HKV) and formalin-killed (FKV) vaccines for the prevention of disease caused by TiLV. The fish were immunized with 100 μL of either HKV or FKV by intraperitoneal injection with each vaccine containing 1.8 × 106 TCID50 inactivated virus. A booster vaccination was carried out at 21-day post vaccination (dpv) using the same protocol. The fish were then challenged with a lethal dose of TiLV at 28 dpv. The expression of five immune genes (IgM, IgD, IgT, CD4 and CD8) in the head kidney and spleen of experimental fish was assessed at 14 and 21 dpv and again after the booster vaccination at 28 dpv. TiLV-specific IgM responses were measured by ELISA at the same time points. The results showed that both vaccines conferred significant protection, with relative percentage survival (RPS) of 71.3% and 79.6% for HKV and FKV, respectively. Significant up-regulation of IgM and IgT was observed in the head kidney of fish vaccinated with HKV at 21 dpv, while IgM, IgD and CD4 expression increased in the head kidney of fish receiving FKV at the same time point. After booster vaccination, IgT and CD8 transcripts were significantly increased in the spleen of fish vaccinated with the HKV, but not with FKV. Both vaccines induced a specific IgM response in both serum and mucus. In summary, this study showed that both HKV and FKV are promising injectable vaccines for the prevention of disease caused by TiLV in Nile tilapia.
Tilapia parvovirus (TiPV) is an emerging virus reportedly associated with disease and mortality in farmed tilapia. Although previous descriptions of histopathological changes are available, the lesions reported in these are not pathognomonic. Here, we report Cowdry type A inclusion bodies (CAIB) in the pancreas as a diagnostic histopathological feature found in adult Nile tilapia naturally infected with TiPV. This type of inclusion body has been well-known as a histopathological landmark for the diagnosis of other parvoviral infections in shrimp and terrestrial species. Interestingly, this lesion could be exclusively observed in pancreatic acinar cells, both in the hepatopancreas and pancreatic tissue along the intestine. In situ hybridization (ISH) using a TiPV-specific probe revealed the intranuclear presence of TiPV DNA in multiple tissues, including the liver, pancreas, kidney, spleen, gills and the membrane of oocytes in the ovary. These findings suggest that although TiPV can replicate in several tissue types, CAIB manifest exclusively in pancreatic tissues. In addition to TiPV, most diseased fish were co-infected with Streptococcus agalactiae, and presented with multifocal granulomas secondary to this bacterial infection. Partial genome amplification of TiPV was successful and revealed high nucleotide identity (>99%) to previously reported isolates. In summary, this study highlights the usefulness of pancreatic tissue as a prime target for histopathological diagnosis of TiPV in diseased Nile tilapia. This pattern may be critical when determining the presence of TiPV infection in new geographic areas, where ancillary testing may not be available. TiPV pathogenesis in this landmark organ warrants further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.