The fermentation stage is vital during the black tea manufacturing process to produce the best-quality tea. The oxidation of tea biochemical compounds results in the appearance of characteristic smell peaks during the fermentation stage. These subtle changes in tea aroma are hard to detect unless one is a trained personnel. Here for the first time, we applied e-nose to monitor the fermentation process of Sri Lankan low-country tea. In this study, detection of smell peaks during fermentation was conducted by a custom-made e-nose (Digi-Nose) with four gas sensors. Singular value decomposition (SVD) is applied to eliminate the noise and dimensionality reduction in the sensor responses observed. The prediction of the time of appearance of smell peaks was conducted with a support-vector machine (SVM). Finally, theaflavin content with time was compared to validate the optimum fermentation times observed with an e-nose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.