Trigonal tricationic ionic liquids (ILs) are a new class of ILs that appear to be unique when used as gas chromatographic stationary phases. They consist of four core structures; (1) A = mesitylene core, (2) B = benzene core, (3) C = triethylamine core, and (4) D = tri(2-hexanamido)ethylamine core; to which three identical imidazolium or phosphonium cationic moieties were attached. These were coated on fused silica capillaries, and their gas chromatographic properties were evaluated. They were characterized using a linear solvation parameter model and a number of test mixtures. On the basis of the literature, it is known that both monocationic and dicationic ILs possess almost identical polarities, solvation characteristics, and chromatographic selectivities. However, some of the trigonal tricationic ILs were quite different. The different solvation parameters and higher apparent polarities appear to generate from the more rigid trigonal geometry of these ILs, as well as their ability to retain the positive charges in relatively close proximity to one another in some cases. Their unique selectivities, retention behaviors, and separation efficiencies were demonstrated using the Grob mixture, a flavor and fragrance test mixture, alcohols/alkanes test, and FAME isomer separations. Two ILs C1 (methylimidazolium substitution) and C4 (2-hydroxyethylimidazolium substitution) had higher apparent polarities than any know IL (mono, di, and tricationic ILs) or commercial stationary phases. The tri(2-hexanamido)ethylamine core IL series proved to be very interesting in that it not only showed the highest separation efficiency for all test mixtures, but it also is the first IL stationary phase (containing NTf(2)(-) anions) that eliminates peak tailing for alcohols and other H-bonding analytes. The thermal stabilities were investigated using three methods: thermogravimetric analysis (TGA) method, temperature programmed gas chromatographic method (TPGC), and isothermal gas chromatographic method. The D core series had a high working temperature range, exceptional selectivities, and higher separation efficiencies than comparable polarity commercial columns. It appears that this specific type of multifunctional ILs may have the most promising future as a new generation of gas chromatographic stationary phases.
Water or aqueous electrolytes are the dominant components in electrowetting on dielectric (EWOD)-based microfluidic devices. Low thermal stability, evaporation, and a propensity to facilitate corrosion of the metal parts of integrated circuits or electronics are drawbacks of aqueous solutions. The alternative use of ionic liquids (ILs) as electrowetting agents in EWOD-based applications or devices could overcome these limitations. Efficient EWOD devices could be developed using task-specific ILs. In this regard, a fundamental study on the electrowetting properties of ILs is essential. Therefore electrowetting properties of 19 different ionic liquids, including mono-, di-, and tricationic, plus mono- and dianionic ILs were examined. All tested ILs showed electrowetting of various magnitudes on an amorphous flouropolymer layer. The effects of IL structure, functionality, and charge density on the electrowetting properties were studied. The enhanced stability of ILs in electrowetting on dielectric at higher voltages was studied in comparison with water. Deviations from classical electrowetting theory were confirmed. The physical properties of ILs and their electrowetting properties were tabulated. These data can be used as references to engineer task-specific electrowetting agents (ILs) for future electrowetting-based applications.
Twenty-three different dications were investigated for their effectiveness in pairing with singly charged anions, thereby allowing the electrospray ionization mass spectrometry (ESI-MS) detection of anions as positively charged complexes. Nitrate, iodide, cyanate, monochloroacetate, benzenesulfonate, and perfluoro-octanoate were chosen as representative test anions as they differ in mass, size-to-charge ratio, chaotropic nature, and overall complexity. Detection limits were found using direct injection of the anion into a carrier liquid containing the dication. Detection limits are given for all six anions with each of the 23 dications. Each anion was easily detected at the ppb (g/L) and often the ppt (ng/L) levels using certain dicationic reagents. The ability of dicationic reagents to pair with anions and produce ESI-MS signals varied tremendously. Indeed, only a few dications can be considered broadly useful and able to produce sensitive results. Liquid chromatography (LC)-ESI-MS also was investigated and used to show how varying the dicationic reagent produced significantly different peak intensities. Also, the use of tandem mass spectrometry can lead to even greater sensitivity when using imidazolium based dications. (J
In recent years, the field of chiral ionic liquids (CILs) has undergone exponential growth. As the technology has advanced, new ways of synthesizing stable and structurally diverse ionic liquids have been established. This has led to heretofore unknown applications of CILs as well as in improving efficiency of previously identified applications. In this review article we have compiled a comprehensive database containing structures and physical properties of notable CILs that have been synthesized during the last 6 years. Their applications in the fields of asymmetric organic synthesis, spectroscopy, and chromatography are also illustrated. This is an expansion of our previous review, which covered the literature before 2005.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.