Abstract:Since 1995, the residential sector has been a fast-growing energy consumption sector in Thailand. This sector contributes dramatically to the growth of Thailand's electricity and oil demand. Our study analysed Thailand's residential energy consumption characteristics and the seven underlying factors affecting the growth in energy use of five demographic regions using an energy input-output method. Embodied energy decomposition revealed that direct energy consumption accounted for approximately 30% of total residential energy use, whereas indirect energy consumption was at 70%. During the studied period, the growth in indirect energy use for all household groups was primarily the result of higher consumption of 'commerce', 'air transport', 'manufacturing', 'food and beverages' and 'agriculture' products. Moreover, each influencing driver contributes differently to each household's growth in energy demand. The number of households was the leading factor that dominated the increases in residential energy use in the Greater Bangkok and Central regions. Growth in residential energy consumption in the Northern, Northeastern and Southern regions was strongly dominated by changes in income per capita. Consumption structure and using energy-efficient products had a moderate impact on all regions' energy consumption. Thus, our findings provide additional energy-saving strategies to restrain further growth in residential energy demand.
<p>In Thailand&#8212;the fourth most polluted nation in Southeast Asia&#8212;air pollution is estimated to take an average three years off people&#8217;s lives. While all of Thailand&#8217;s 68 million people live in areas that exceed the World Health Organization&#8217;s (WHO) guidelines for airborne fine particulate matter less than 2.5 microns (PM<sub>2.5</sub>), Bangkok and Chiang Mai in particular (the focus of this study) are among the provinces carrying the highest health burden.</p><p>Currently, while the science behind air pollution is unequivocal, its public representation is, with official accounts perpetuating existing inequities by narrowly determining how crises are defined and selectively narrating who is impacted by them&#8212;pushing civil society voices to the fringes of public conversations on air pollution. To decenter this inequity, this study uses innovative participatory futures methods to gather civil society perspectives on the plausible, possible, and probable future solutions to air pollution and its impact on people&#8217;s health as well as social and economic implications on wellbeing. This is to ensure that civil society perspectives on solutions inform future advocacy, policy, and programmatic recommendations for addressing air pollution.</p><p>This research proposes to use modelling and air quality forecasting (the Stockholm Environment Institute&#8217;s Low Emissions Analysis Platform, Integrated Benefits Calculator) to create four sets of projections for air pollution 30 years from now (in 2053) that will then form the basis for four futures scenarios to be presented to civil society study participants as a direct form of citizen engagement.</p><p>Based on modelling results, scientists, subject matter experts, and civil society stakeholders will be engaged in online scenario-building workshops to create four futures scenarios. For instance, health, economic, political, and social implications will be generated from workshop dialogue, informed by model projections, and used to construct imaginary narratives within each of the four futures scenarios (that will then serve as the basis for the futures visioning interviews with civil society participants). Final scenarios will include depictions of social, economic, and health standards for Thai people in 2053. Once the four scenarios have been developed and stress tested, online individual participatory futures interviews will be conducted with civil society participants based in Bangkok and Chiang Mai (n=20 per city to reach an inductive thematic saturation point for primary data collection), using a blend of purposive (selective) sampling and snowball sampling methods. The University of Hawaii&#8217;s Manoa Futures Visioning Process and Krishnan&#8217;s decolonial futures/foresight framework will be employed to ensure an equitable and participant-centered approach.</p><p>Data collection and analysis will be completed by the start of the EGU General Assembly in April 2023; the AS5.13 session will be used to share experiences and lessons learned through integrating climate modelling with citizen science within this study to inform potential regional futures work within South and Southeast Asia (and beyond). Results from the study will inform the work that the Thailand Clean Air Network is doing regarding air quality policy advocacy in Thailand, among other avenues.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.