A solar simulator suitable for universities' lab was designed and developed using a quartz tungsten halogen lamp as its light source, an alternating current phase-cut dimmer, a light intensity meter, and an ATMega328p microcontroller with a computer and a liquid crystal display. Noting that the quartz tungsten halogen lamp suffers bulb overheating and longterm degradation that leads to the decrease in its light intensity, a control mechanism was applied. The control mechanism employed a proportional-integral-differential action with Some-Overshoot Ziegler-Nichols tuning rule. It was shown that the control mechanism works well in stabilizing the quartz tungsten halogen lamp irradiance between 273 and 1182 W/m 2. The developed solar simulator was then tested to obtain I-V (current-voltage) characteristics of 3 W peak and 5 W peak commercial solar panels (GH Solar, GH5P-9). Based on the gained I-V characteristics, it was shown that the obtained characteristics of the commercial solar panels are in the range of the characteristics provided by the manufacturer's data sheets. The developed quartz tungsten halogen lamp-based solar cell simulator can therefore be used to characterize solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.