Hydroxy and oxo fatty acids were recently found to be produced as intermediates during gut microbial fatty acid metabolism. Lactobacillus plantarum produces these fatty acids from unsaturated fatty acids such as linoleic acid. In this study, we investigated the effects of these gut microbial fatty acid metabolites on the lipogenesis in liver cells. We screened their effect on sterol regulatory element binding protein-1c (SREBP-1c) expression in HepG2 cells treated with a synthetic liver X receptor α (LXRα) agonist (T0901317). The results showed that 10-hydroxy-12(Z)-octadecenoic acid (18:1) (HYA), 10-hydroxy-6(Z),12(Z)-octadecadienoic acid (18:2) (γHYA), 10-oxo-12(Z)-18:1 (KetoA), and 10-oxo-6(Z),12(Z)-18:2 (γKetoA) significantly decreased SREBP-1c mRNA expression induced by T0901317. These fatty acids also downregulated the mRNA expression of lipogenic genes by suppressing LXRα activity and inhibiting SREBP-1 maturation. Oral administration of KetoA, which effectively reduced triacylglycerol accumulation and acetyl-CoA carboxylase 2 (ACC2) expression in HepG2 cells, for 2 weeks significantly decreased Srebp-1c, Scd-1, and Acc2 expression in the liver of mice fed a high-sucrose diet. Our findings suggest that the hypolipidemic effect of the fatty acid metabolites produced by L. plantarum can be exploited in the treatment of cardiovascular diseases or dyslipidemia.
Dietary polyunsaturated fatty acids (PUFA), especially eicosapentaenoic acid (EPA), improve lipid metabolism and contribute to the prevention of vascular diseases such as atherosclerosis. However, EPA in the diet is easily oxidized at room temperature and several types of oxidized EPA (OEPA) derivatives are generated. To compare the efficiencies of OEPAs on lipid metabolism with EPA, human hepatocellular liver carcinoma cell line (HepG2) was treated with EPA or OEPAs and their effects on lipid metabolism related genes were studied. OEPAs more potently suppressed the expression of sterol-responsive element-binding protein (SREBP)-1c, a major transcription factor that activates the expression of lipogenic genes, and its downstream target genes than did EPA under conditions of lipid synthesis enhanced by T0901317, a synthetic liver X receptor (LXR) agonist. Furthermore, PGC-1β, a coactivator of both LXRα and SREBP-1, was markedly down-regulated by OEPAs compared with EPA. The treatment of OEPAs also significantly down-regulated the expression of glycerol-3-phosphate acyltransferase (GPA), the initiating enzyme in triacylglycerol (TG) synthesis, more than EPA. Therefore, the advantageous effects of OEPAs on cardiovascular diseases might be due to their SREBP-1c, PGC-1β and GPA mediated ameliorating effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.