There are at least three models of discrete-time quantum walks (QWs) on graphs currently under active development. In this work we focus on the equivalence of two of them, known as Szegedy's and staggered QWs. We give a formal definition of the staggered model and discuss generalized versions for searching marked vertices. Using this formal definition, we prove that any instance of Szegedy's model is equivalent to an instance of the staggered model. On the other hand, we show that there are instances of the staggered model that cannot be cast into Szegedy's framework. Our analysis also works when there are marked vertices. We show that Szegedy's spatial search algorithms can be converted into search algorithms in staggered QWs. We take advantage of the similarity of those models to define the quantum hitting time in the staggered model and to describe a method to calculate the eigenvalues and eigenvectors of the evolution operator of staggered QWs.
Quantum search on the two-dimensional lattice with one marked vertex and cyclic boundary conditions is an important problem in the context of quantum algorithms with an interesting unfolding. It avails to test the ability of quantum walk models to provide efficient algorithms from the theoretical side and means to implement quantum walks in laboratories from the practical side. In this paper, we rigorously prove that the recent-proposed staggered quantum walk model provides an efficient quantum search on the two-dimensional lattice, if the reflection operators associated with the graph tessellations are used as Hamiltonians, which is an important theoretical result for validating the staggered model with Hamiltonians. Numerical results show that on the two-dimensional lattice staggered models without Hamiltonians are not as efficient as the one described in this paper and are, in fact, as slow as classical random-walk-based algorithms.
A tessellation of a graph is a partition of its vertices into vertex disjoint cliques. A tessellation cover of a graph is a set of tessellations that covers all of its edges. The t-tessellability problem aims to decide whether there is a tessellation cover of the graph with t tessellations. This problem is motivated by its applications to quantum walk models, in especial, the evolution operator of the staggered model is obtained from a graph tessellation cover. We establish upper bounds on the tessellation cover number given by the minimum between the chromatic index of the graph and the chromatic number of its clique graph and we show graph classes for which these bounds are tight. We prove N P-completeness for t-tessellability if the instance is restricted to planar graphs, chordal (2, 1)-graphs, (1, 2)-graphs, diamond-free graphs with diameter five, or for any fixed t at least 3. On the other hand, we improve the complexity for 2-tessellability to a linear-time algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.