Cryptococcosis is an important fungal infection in immunocompromised individuals, especially those infected with HIV. In Brazil, despite the free availability of antiretroviral therapy (ART) in the public health system, the mortality rate due to Cryptococcus neoformans meningitis is still high. To obtain a more detailed picture of the population genetic structure of this species in southeast Brazil, we studied 108 clinical isolates from 101 patients and 35 environmental isolates. Among the patients, 59% had a fatal outcome mainly in HIV-positive male patients. All the isolates were found to be C. neoformans var. grubii major molecular type VNI and mating type locus alpha. Twelve were identified as diploid by flow cytometry, being homozygous (AαAα) for the mating type and by PCR screening of the STE20, GPA1, and PAK1 genes. Using the ISHAM consensus multilocus sequence typing (MLST) scheme, 13 sequence types (ST) were identified, with one being newly described. ST93 was identified from 81 (75%) of the clinical isolates, while ST77 and ST93 were identified from 19 (54%) and 10 (29%) environmental isolates, respectively. The southeastern Brazilian isolates had an overwhelming clonal population structure. When compared with populations from different continents based on data extracted from the ISHAM-MLST database (mlst.mycologylab.org) they showed less genetic variability. Two main clusters within C. neoformans var. grubii VNI were identified that diverged from VNB around 0.58 to 4.8 million years ago.
Cryptococcal infections are mainly caused by members of the Cryptococcus neoformans species complex (molecular types VNI, VNII, VNB, VNIV and the AD hybrid VNIII). PCR of the mating type loci and MLST typing using the ISHAM-MLST consensus scheme were used to evaluate the genetic relationship of 102 (63 clinical and 39 environmental) C. neoformans isolates from Uberaba, Brazil and to correlate the obtained genotypes with clinical, antifungal susceptibility and virulence factor data. All isolates were mating type alpha. MLST identified 12 known and five new sequence types (ST). Fourteen STs were identified within the VNI isolates, with ST93 (57/102, 56%) and ST77 (19/102, 19%) being the most prevalent. From the nine VNII isolates previously identify by URA5-RFLP only four (ST40) were confirmed by MLST. The remaining five grouped within the VNB clade in the phylogenetic analysis corresponding to the sequence type ST504. Other two environmental isolates also grouped within VNB clade with the new sequence type ST527. The four VNII/ST40 isolates were isolated from CSF. The two VNIV sequence types (ST11 and ST160) were isolated from blood cultures. Two of six patients evaluated with more than one isolates had mixed infections. Amongst the VNI isolates 4 populations were identified, which showed differences in their susceptibility profiles, clinical outcome and virulence factors. These results reinforce that ST93 is the most prevalent ST in HIV-infected patients in the Southeastern region of Brazil. The finding of the VNB molecular type amongst environmental Brazilian isolates highlights that this genotype is not restricted to the African continent.
Entamoeba gingivalis is considered an oral commensal but demonstrates a pathogenic potential associated with periodontal disease in immunocompromised individuals. Therefore, this study evaluated the occurrence, opportunistic conditions, and intraspecific genetic variability of E. gingivalis in HIV(+)/AIDS patients. Entamoeba gingivalis was studied using fresh examination (FE), culture, and PCR from bacterial plaque samples collected from 82 HIV(+)/AIDS patients. Genetic characterization of the lower ribosomal subunit of region 18S (18S-SSU rRNA) was conducted in 9 positive samples using low-stringency single specific primer PCR (LSSP-PCR) and sequencing analysis. Entamoeba gingivalis was detected in 63.4% (52/82) of the samples. No association was detected between the presence of E. gingivalis and the CD4+ lymphocyte count (≤200 cells/mm3 (p = 0.912) or viral load (p = 0.429). The LSSP-PCR results helped group E. gingivalis populations into 2 polymorphic groups (68.3% similarity): group I, associated with 63.6% (7/11) of the samples, and group II, associated with 36.4% (4/11) of the samples, which shared 74% and 83.7% similarity and association with C and E isolates from HIV(−) individuals, respectively. Sequencing of 4 samples demonstrated 99% identity with the reference strain ATCC 30927 and also showed 2 divergent clusters, similar to those detected by LSSP-PCR. Opportunistic behavior of E. gingivalis was not detected, which may be related to the use of highly active antiretroviral therapy by all HIV(+)/AIDS patients. The high occurrence of E. gingivalis in these patients can be influenced by multifactorial components not directly related to the CD4+ lymphocyte counts, such as cholesterol and the oral microbiota host, which could mask the potential opportunistic ability of E. gingivalis. The identification of the 18S SSU-rRNA polymorphism by LSSP-PCR and sequencing analysis provides the first evidence of genetic variability in E. gingivalis isolated from HIV patients.
BackgroundAlthough Cryptococcus laurentii has been considered saprophytic and its taxonomy is still being described, several cases of human infections have already reported. This study aimed to evaluate molecular aspects of C. laurentii isolates from Brazil, Botswana, Canada, and the United States.MethodsIn this study, 100 phenotypically identified C. laurentii isolates were evaluated by sequencing the 18S nuclear ribosomal small subunit rRNA gene (18S-SSU), D1/D2 region of 28S nuclear ribosomal large subunit rRNA gene (28S-LSU), and the internal transcribed spacer (ITS) of the ribosomal region.ResultsBLAST searches using 550-bp, 650-bp, and 550-bp sequenced amplicons obtained from the 18S-SSU, 28S-LSU, and the ITS region led to the identification of 75 C. laurentii strains that shared 99–100% identity with C. laurentii CBS 139. A total of nine isolates shared 99% identity with both Bullera sp. VY-68 and C. laurentii RY1. One isolate shared 99% identity with Cryptococcus rajasthanensis CBS 10406, and eight isolates shared 100% identity with Cryptococcus sp. APSS 862 according to the 28S-LSU and ITS regions and designated as Cryptococcus aspenensis sp. nov. (CBS 13867). While 16 isolates shared 99% identity with Cryptococcus flavescens CBS 942 according to the 18S-SSU sequence, only six were confirmed using the 28S-LSU and ITS region sequences. The remaining 10 shared 99% identity with Cryptococcus terrestris CBS 10810, which was recently described in Brazil. Through concatenated sequence analyses, seven sequence types in C. laurentii, three in C. flavescens, one in C. terrestris, and one in the C. aspenensis sp. nov. were identified.ConclusionsSequencing permitted the characterization of 75% of the environmental C. laurentii isolates from different geographical areas and the identification of seven haplotypes of this species. Among sequenced regions, the increased variability of the ITS region in comparison to the 18S-SSU and 28S-LSU regions reinforces its applicability as a DNA barcode.
In recent decades, emerging fungal infections have changed the clinical mycology scenario as a consequence of the advances in medical diagnostics and therapeutic procedures, long hospitalization times, and the growing number of individuals with debilitating chronic diseases and impaired immune systems. This report presents a 19 months old Brazilian female patient who developed a severe fungal sepsis by an uncommon yeast. She was admitted at the intensive care unit with severe pneumonia, bronchopulmonary dysplasia, and weight-for-age z score of less than −2. She remained more than 30 days in the intensive care unit where she had a femoral venous catheter placement, enteral nutrition, broad-spectrum antibiotic therapy, and prophylaxis with fluconazole. Moreover, pericardiocentesis was performed due to cardiac tamponade. She had a previous history of prematurity, cardiac surgery due to patent ductus arteriosus, and a long period of hospital stay. Despite the antifungal prophylaxis, two yeast isolates were recovered from blood and then identified by classical mycological methods and internal transcribed spacer (ITS) sequencing as Wickerhamomyces anomalus. Both isolates exhibited susceptibility to amphotericin B, ketoconazole, itraconazole, voriconazole, and fluconazole. Her clinical state worsened, presenting anasarca, epistaxis, and hemorrhagic suffusions in the mouth, sclera, oliguria, and bradycardia. Two days after the first positive culture, she presented a gradual reduction of the white blood cells count, with severe leukopenia and neutropenia. She died five days after.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.