PPARs (peroxisome-proliferator-activated receptors) are ligand-activated transcriptional factor receptors belonging to the so-called nuclear receptor family. The three isoforms of PPAR (alpha, beta/delta and gamma) are involved in regulation of lipid or glucose metabolism. Beyond metabolic effects, PPARalpha and PPARgamma activation also induces anti-inflammatory and antioxidant effects in different organs. These pleiotropic effects explain why PPARalpha or PPARgamma activation has been tested as a neuroprotective agent in cerebral ischaemia. Fibrates and other non-fibrate PPARalpha activators as well as thiazolidinediones and other non-thiazolidinedione PPARgamma agonists have been demonstrated to induce both preventive and acute neuroprotection. This neuroprotective effect involves both cerebral and vascular mechanisms. PPAR activation induces a decrease in neuronal death by prevention of oxidative or inflammatory mechanisms implicated in cerebral injury. PPARalpha activation induces also a vascular protection as demonstrated by prevention of post-ischaemic endothelial dysfunction. These vascular effects result from a decrease in oxidative stress and prevention of adhesion proteins, such as vascular cell adhesion molecule 1 or intercellular cell-adhesion molecule 1. Moreover, PPAR activation might be able to induce neurorepair and endothelium regeneration. Beyond neuroprotection in cerebral ischaemia, PPARs are also pertinent pharmacological targets to induce neuroprotection in chronic neurodegenerative diseases.
In stroke, there is an imperative need to develop disease-modifying drugs able to (1) induce neuroprotection and vasculoprotection, (2) modulate recovery and brain plasticity, and (3) limit the short-term motor and cognitive consequences. We hypothesized that fenofibrate, a peroxisome proliferator-activated receptor-α (PPAR-α) agonist, could exert a beneficial effect on immediate and short-term poststroke consequences related to its pleiotropic mechanisms. Rats or mice were subjected to focal ischemia to determine the effects of acute treatment by fenofibrate on (i) motor and memory impairment, (2) both cerebral and vascular compartments, (3) inflammation, (4) neurogenesis, and (5) amyloid cascade. We show that fenofibrate administration results in both neuronal and vascular protection and prevents the short-term motor and cognitive poststroke consequences by interaction with several mechanisms. Modulation of PPAR-α generates beneficial effects in the immediate poststroke consequences by mechanisms involving the interactions between polynuclear neutrophils and the vessel wall, and microglial activation. Fenofibrate modulates mechanisms involved in neurorepair and amyloid cascade. Our results suggest that PPAR-α agonists could check the key points of a potential disease-modifying effect in stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.