Tension wood is an important anatomical structure for its participation in the orientation of the trunk and the architecture of the branches as a function of structural reinforcement. However, its presence in large amounts significantly affects the technological properties of wood, just as in the rubber tree. Nevertheless, there is still demand for information about the origin, distribution and structural features in this species. Thus, this study aims to characterize the cellular structures in tension and opposite wood in Hevea brasiliensis (rubber tree), as well as its radial and longitudinal distribution. Discs at the base and the middle of the commercial logs were collected from three trees in a commercial plantation located in Tabapoã - SP. Tangential diameter of vessels, fiber length (gelatinous and non-gelatinous fibers), microfibril angle and proportionality of cellular elements (vessels, axial parenchyma, ray, gelatinous fibers and non-gelatinous fibers) were measured, and influence of gelatinous fiber presence in vessel diameter was observed. Gelatinous fibers were observed in the two types of wood and in the two trunk heights. Both types of wood were distinguished by gelatinous fiber length and the proportion of axial parenchyma. The tension wood in mid-trunk was the most different, with long gelatinous fibers and less abundant, larger vessel diameter and vessel proportion. Moreover, smaller vessel diameter was observed in the regions with a high proportion of gelatinous fibers, suggesting that the plant invests more support than in liquid transport.
The objective of this study was to characterize the wood anatomical structure of a rubber tree clone, under the influence of two different canopy grafts. The following rubber trees were selected in the system of a double-grafted PB 311 + FX 2784 and PB 311 + MDF 180. For each tree, discs of wood were cut from the affected branch immediately below the insertion of clone at right angles to the axis, from which the regions corresponding to tension, in opposite and normal wood, were identified. The anatomical analyses were conducted in accordance with the standards established by the International Association of Wood Anatomy Committee. The Kruskal-Wallis nonparametric test was applied for multiple comparisons among the types of woods and radial positions studied, at 5% of significance. Still, multivariate associations were assessed among the anatomical characteristics of both double-grafted rubber trees, by means of a two-step cluster analysis. Quantitative morphological differences were observed in the wood cells of the double-grafted studied clones. The ray height and the vessels diameter were the most important morphologic characteristics for the distinction. The canopy clone exhibited the ability to modulate the quantitative anatomical characters of the panel clone, depending on the plant’s needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.